scholarly journals A charge-dependent phase transition determines interphase chromatin organization

2019 ◽  
Author(s):  
Hilmar Strickfaden ◽  
Ajit K. Sharma ◽  
Michael J. Hendzel

AbstractAn emerging principle of cellular compartmentalization is that liquid unmixing results in formation of compartments by phase separation. We used electron spectroscopic Imaging (ESI), a transmission electron microscopy technology, to distinguish chromatin and nucleoplasmic phases of mammalian cell lines and their responses towards different environmental changes. We tested the hypothesis that charge-dependent phase separation mediated by the histone N-termini could explain the organization of chromatin. 3D images of nuclear chromatin with electron spectroscopic imaging (ESI) demonstrates that the amount of chromatin proximal to the interchromatin compartment (IC) differs between cell types, reflecting major differences in chromatin organization. These differences were lost when cells were treated overnight with a histone deacetylase inhibitor. We show that drastic, reversible changes in chromatin mixing or unmixing with the nucleoplasm/interchromatin space can be induced by modulating osmolarity of the medium or acetylation status of the chromatin. In vitro phase separation experiments demonstrated that chromatin separated from solution through a phase transition towards a more solid chromatin state.

Author(s):  
G. J. Czarnota ◽  
D. P. Bazett-Jones ◽  
F. P. Ottensmeyer

The three-dimensional structure of the nucleosome was determined using particles purified from transcriptionally active genes in conjunction with electron spectroscopic imaging, and quaternion-assisted angular reconstitution procedures. The results reveal a configuration which is very different from the canonical compact crystallographic structure for this fundamental chromosome subunit, implying a structural disruption of the nucleosome with the activation of gene expression in accord with numerous physico-chemical observations.Previous analyses of nucleosomes purified from transcriptionally quiescent genes have indicated numerous structural states dependent on factors in vitro which modify charge based interactions in nucleoprotein complexes. Nucleosomes from transcriptionally active genes undergo chemical alterations in vivo which similarly modify charge based interactions. In order to investigate the effects of the gene expression associated chemical alterations on nucleosome structure, particles were purified from transcriptionally active genes using mercury affinity chromatography. These nucleosome particles are hyperacetylated with respect to particles from transcriptionally quiescent genes. Here additionally, sulphydryls normally buried within the protein core of the transcriptionally inactive particle are exposed to chemical modifying agents thus facilitating purification as described.


2020 ◽  
Author(s):  
Hiroya Tange ◽  
Daisuke Ishibashi ◽  
Takehiro Nakagaki ◽  
Yuzuru Taguchi ◽  
Yuji O. Kamatari ◽  
...  

AbstractPrion diseases are characterized by accumulation of amyloid fibrils. The causative agent is an infectious amyloid that is comprised solely of misfolded prion protein (PrPSc). Prions can convert PrPC to proteinase-resistant PrP (PrP-res) in vitro; however, the intermediate steps involved in the spontaneous conversion remain unknown. We investigated whether recombinant prion protein (rPrP) can directly convert into PrP-res via liquid-liquid phase separation in the absence of PrPSc. We found that rPrP underwent liquid-liquid phase separation at the interface of the aqueous two-phase system (ATPS) of polyethylene glycol (PEG) and dextran, whereas single-phase conditions were not inducible. Fluorescence recovery assay after photobleaching revealed that the liquid-solid phase transition occurred within a short time. The aged rPrP-gel acquired proteinase-resistant amyloid accompanied by β-sheet conversion, as confirmed by western blotting, Fourier transform infrared spectroscopy, and Congo red staining. The reactions required both the N-terminal region of rPrP (amino acids 23-89) and kosmotropic salts, suggesting that the kosmotropic anions may interact with the N-terminal region of rPrP to promote liquid-liquid phase separation. Thus, structural conversion via liquid–liquid phase separation and liquid–solid phase transition are intermediate steps in the conversion of prions.


2015 ◽  
Vol 112 (38) ◽  
pp. E5237-E5245 ◽  
Author(s):  
Joel Berry ◽  
Stephanie C. Weber ◽  
Nilesh Vaidya ◽  
Mikko Haataja ◽  
Clifford P. Brangwynne

Nuclear bodies are RNA and protein-rich, membraneless organelles that play important roles in gene regulation. The largest and most well-known nuclear body is the nucleolus, an organelle whose primary function in ribosome biogenesis makes it key for cell growth and size homeostasis. The nucleolus and other nuclear bodies behave like liquid-phase droplets and appear to condense from the nucleoplasm by concentration-dependent phase separation. However, nucleoli actively consume chemical energy, and it is unclear how such nonequilibrium activity might impact classical liquid–liquid phase separation. Here, we combine in vivo and in vitro experiments with theory and simulation to characterize the assembly and disassembly dynamics of nucleoli in early Caenorhabditis elegans embryos. In addition to classical nucleoli that assemble at the transcriptionally active nucleolar organizing regions, we observe dozens of “extranucleolar droplets” (ENDs) that condense in the nucleoplasm in a transcription-independent manner. We show that growth of nucleoli and ENDs is consistent with a first-order phase transition in which late-stage coarsening dynamics are mediated by Brownian coalescence and, to a lesser degree, Ostwald ripening. By manipulating C. elegans cell size, we change nucleolar component concentration and confirm several key model predictions. Our results show that rRNA transcription and other nonequilibrium biological activity can modulate the effective thermodynamic parameters governing nucleolar and END assembly, but do not appear to fundamentally alter the passive phase separation mechanism.


2021 ◽  
Author(s):  
Bryan A Gibson ◽  
Claudia Blaukopf ◽  
Tracy Lou ◽  
Lynda K Doolittle ◽  
Ilya J Finkelstein ◽  
...  

Eukaryotic nuclear DNA is wrapped around histone proteins to form nucleosomes, which further assemble to package and regulate the genome. Understanding of the physical mechanisms that contribute to higher order chromatin organization is limited. Previously, we reported the intrinsic capacity of chromatin to undergo phase separation and form dynamic liquid-like condensates, which can be regulated by cellular factors. Recent work from Hansen, Hendzel, and colleagues suggested these intrinsic chromatin condensates are solid in all but a specific set of conditions. Here we show that intrinsic chromatin condensates are fluid in diverse solutions, without need for specific buffering components. Exploring experimental differences in sample preparation and imaging between these two studies, we suggest what may have led Hansen, Hendzel, and colleagues to mischaracterize the innate properties of chromatin condensates. We also describe how liquid-like in vitro behaviors can translate to the locally dynamic but globally constrained movement of chromatin in cells.


2021 ◽  
Author(s):  
Soichiro Kawagoe ◽  
Motonori Matsusaki ◽  
Koichiro Ishimori ◽  
Tomohide Saio

ABSTRACTHeat shock factor 1 (Hsf1) was found as a central upregulator of molecular chaperones in stress adaptation, but it has recently been rediscovered as a major component of persistent nuclear stress bodies (nSBs). When the persistently stressed cells undergo apoptosis, the phase transition of nSBs from fluid to gel-like states is proposed to be an important event in switching the cell fate from survival to death. Nonetheless, how the phase separation and transition of nSBs are driven remain unanswered. In this study, we discovered that Hsf1 formed liquid-liquid phase separation droplets in vitro, causing the assembly of Hsf1 to drive nSBs formation. Under oxidative conditions, disulfide-bonded and oligomerized Hsf1 formed gel-like and more condensed droplets, confirmed through fluorescence recovery, refractive index imaging, and light scattering. Then, on the basis of our results, we proposed that Hsf1 undergoes oxidative phase transition by sensing redox conditions potentially to drive the cell fate decision by nSBs.


Author(s):  
K. Shankar Narayan ◽  
Kailash C. Gupta ◽  
Tohru Okigaki

The biological effects of short-wave ultraviolet light has generally been described in terms of changes in cell growth or survival rates and production of chromosomal aberrations. Ultrastructural changes following exposure of cells to ultraviolet light, particularly at 265 nm, have not been reported.We have developed a means of irradiating populations of cells grown in vitro to a monochromatic ultraviolet laser beam at a wavelength of 265 nm based on the method of Johnson. The cell types studies were: i) WI-38, a human diploid fibroblast; ii) CMP, a human adenocarcinoma cell line; and iii) Don C-II, a Chinese hamster fibroblast cell strain. The cells were exposed either in situ or in suspension to the ultraviolet laser (UVL) beam. Irradiated cell populations were studied either "immediately" or following growth for 1-8 days after irradiation.Differential sensitivity, as measured by survival rates were observed in the three cell types studied. Pattern of ultrastructural changes were also different in the three cell types.


Author(s):  
Daniel Beniac ◽  
George Harauz

The structures of E. coli ribosomes have been extensively probed by electron microscopy of negatively stained and frozen hydrated preparations. Coupled with quantitative image analysis and three dimensional reconstruction, such approaches are worthwhile in defining size, shape, and quaternary organisation. The important question of how the nucleic acid and protein components are arranged with respect to each other remains difficult to answer, however. A microscopical technique that has been proposed to answer this query is electron spectroscopic imaging (ESI), in which scattered electrons with energy losses characteristic of inner shell ionisations are used to form specific elemental maps. Here, we report the use of image sorting and averaging techniques to determine the extent to which a phosphorus map of isolated ribosomal subunits can define the ribosomal RNA (rRNA) distribution within them.


Author(s):  
David P. Bazett-Jones ◽  
Mark L. Brown

A multisubunit RNA polymerase enzyme is ultimately responsible for transcription initiation and elongation of RNA, but recognition of the proper start site by the enzyme is regulated by general, temporal and gene-specific trans-factors interacting at promoter and enhancer DNA sequences. To understand the molecular mechanisms which precisely regulate the transcription initiation event, it is crucial to elucidate the structure of the transcription factor/DNA complexes involved. Electron spectroscopic imaging (ESI) provides the opportunity to visualize individual DNA molecules. Enhancement of DNA contrast with ESI is accomplished by imaging with electrons that have interacted with inner shell electrons of phosphorus in the DNA backbone. Phosphorus detection at this intermediately high level of resolution (≈lnm) permits selective imaging of the DNA, to determine whether the protein factors compact, bend or wrap the DNA. Simultaneously, mass analysis and phosphorus content can be measured quantitatively, using adjacent DNA or tobacco mosaic virus (TMV) as mass and phosphorus standards. These two parameters provide stoichiometric information relating the ratios of protein:DNA content.


Author(s):  
C.L. Woodcock ◽  
R.A. Horowitz ◽  
D. P. Bazett-Jones ◽  
A.L. Olins

In the eukaryotic nucleus, DNA is packaged into nucleosomes, and the nucleosome chain folded into ‘30nm’ chromatin fibers. A number of different model structures, each with a specific location of nucleosomal and linker DNA have been proposed for the arrangment of nucleosomes within the fiber. We are exploring two strategies for testing the models by localizing DNA within chromatin: electron spectroscopic imaging (ESI) of phosphorus atoms, and osmium ammine (OSAM) staining, a method based on the DNA-specific Feulgen reaction.Sperm were obtained from Patiria miniata (starfish), fixed in 2% GA in 150mM NaCl, 15mM HEPES pH 8.0, and embedded In Lowiciyl K11M at -55C. For OSAM staining, sections 100nm to 150nm thick were treated as described, and stereo pairs recorded at 40,000x and 100KV using a Philips CM10 TEM. (The new osmium ammine-B stain is available from Polysciences Inc). Uranyl-lead (U-Pb) staining was as described. ESI was carried out on unstained, very thin (<30 nm) beveled sections at 80KV using a Zeiss EM902. Images were recorded at 20,000x and 30,000x with median energy losses of 110eV, 120eV and 160eV, and a window of 20eV.


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


Sign in / Sign up

Export Citation Format

Share Document