scholarly journals Adaptation and latitudinal gradients in species interactions: nest predation in birds

2019 ◽  
Author(s):  
Benjamin G. Freeman ◽  
Micah N. Scholer ◽  
Mannfred M. A. Boehm ◽  
Julian Heavyside ◽  
Dolph Schluter

AbstractThe “biotic interactions” hypothesis—that stronger interspecific interactions in the tropics drive faster evolution and speciation, giving rise to the latitudinal diversity gradient—has inspired many tests of whether certain biotic interactions are indeed stronger in the tropics. However, the possibility that populations have adapted to latitudinal differences in species interactions, blunting effects on evolutionary rates, has been largely ignored. Here we show that mean rates of nest predation experienced by land birds vary minimally with latitude in the Western Hemisphere. This result is surprising because nest predation in birds is a canonical example of a strong tropical biotic interaction. We explain our finding by demonstrating that (1) rates of nest predation are in fact higher in the tropics, but only when controlling for the length of the nesting period, (2) long nesting periods are associated with reduced predation rates, and (3) tropical birds have evolved particularly long nesting periods. We suggest this is a case example of how adaptation to a biotic interaction can alter observed latitudinal gradients in interaction strength, potentially equalizing evolutionary rates among latitudes. More broadly, we advocate for tests of the biotic interactions hypothesis to consider both latitudinal patterns in interaction strength and evolutionary responses to these interactions.

Science ◽  
2018 ◽  
Vol 362 (6415) ◽  
pp. 680-683 ◽  
Author(s):  
Vojtěch Kubelka ◽  
Miroslav Šálek ◽  
Pavel Tomkovich ◽  
Zsolt Végvári ◽  
Robert P. Freckleton ◽  
...  

Ongoing climate change is thought to disrupt trophic relationships, with consequences for complex interspecific interactions, yet the effects of climate change on species interactions are poorly understood, and such effects have not been documented at a global scale. Using a single database of 38,191 nests from 237 populations, we found that shorebirds have experienced a worldwide increase in nest predation over the past 70 years. Historically, there existed a latitudinal gradient in nest predation, with the highest rates in the tropics; however, this pattern has been recently reversed in the Northern Hemisphere, most notably in the Arctic. This increased nest predation is consistent with climate-induced shifts in predator-prey relationships.


2020 ◽  
Vol 51 (1) ◽  
pp. 215-243 ◽  
Author(s):  
David H. Hembry ◽  
Marjorie G. Weber

Linking interspecific interactions (e.g., mutualism, competition, predation, parasitism) to macroevolution (evolutionary change on deep timescales) is a key goal in biology. The role of species interactions in shaping macroevolutionary trajectories has been studied for centuries and remains a cutting-edge topic of current research. However, despite its deep historical roots, classic and current approaches to this topic are highly diverse. Here, we combine historical and contemporary perspectives on the study of ecological interactions in macroevolution, synthesizing ideas across eras to build a zoomed-out picture of the big questions at the nexus of ecology and macroevolution. We discuss the trajectory of this important and challenging field, dividing research into work done before the 1970s, research between 1970 and 2005, and work done since 2005. We argue that in response to long-standing questions in paleobiology, evidence accumulated to date has demonstrated that biotic interactions (including mutualism) can influence lineage diversification and trait evolution over macroevolutionary timescales, and we outline major open questions for future research in the field.


2020 ◽  
Author(s):  
J. Drury ◽  
J. Clavel ◽  
J.A. Tobias ◽  
J. Rolland ◽  
C. Sheard ◽  
...  

AbstractThe latitudinal diversity gradient is one of the most striking patterns in nature yet its implications for morphological evolution are poorly understood. In particular, it has been proposed that an increased intensity of species interactions in tropical biota may either promote or constrain trait evolution, but which of these outcomes predominates remains uncertain. Here, we develop tools for fitting phylogenetic models of phenotypic evolution in which the impact of species interactions can vary across lineages. Deploying these models on a global avian trait dataset to explore differences in trait divergence between tropical and temperate lineages, we find that the effect of latitude on the mode and tempo of morphological evolution is weak and clade- or trait-dependent. Our results indicate that species interactions do not disproportionately impact morphological evolution in tropical bird families and question the validity and universality of previously reported patterns of slower trait evolution in the tropics.


2020 ◽  
Vol 196 (6) ◽  
pp. E160-E166
Author(s):  
Benjamin G. Freeman ◽  
Micah N. Scholer ◽  
Mannfred M. A. Boehm ◽  
Julian Heavyside ◽  
Dolph Schluter

mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Sara L. Jackrel ◽  
Kathryn C. Schmidt ◽  
Bradley J. Cardinale ◽  
Vincent J. Denef

ABSTRACT Bacteria associated with eukaryotic hosts can affect host fitness and trophic interactions between eukaryotes, but the extent to which bacteria influence the eukaryotic species interactions within trophic levels that modulate biodiversity and species coexistence is mostly unknown. Here, we used phytoplankton, which are a classic model for evaluating interactions between species, grown with and without associated bacteria to test whether the bacteria alter the strength and type of species interactions within a trophic level. We demonstrate that host-associated bacteria alter host growth rates and carrying capacity. This did not change the type but frequently changed the strength of host interspecific interactions by facilitating host growth in the presence of an established species. These findings indicate that microbiomes can regulate their host species’ interspecific interactions. As between-species interaction strength impacts their ability to coexist, our findings show that microbiomes have the potential to modulate eukaryotic species diversity and community composition. IMPORTANCE Description of the Earth’s microbiota has recently undergone a phenomenal expansion that has challenged basic assumptions in many areas of biology, including hominid evolution, human gastrointestinal and neurodevelopmental disorders, and plant adaptation to climate change. By using the classic model system of freshwater phytoplankton that has been drawn upon for numerous foundational theories in ecology, we show that microbiomes, by facilitating their host population, can also influence between-species interactions among their eukaryotic hosts. Between-species interactions, including competition for resources, has been a central tenet in the field of ecology because of its implications for the diversity and composition of communities and how this in turn shapes ecosystem functioning.


2021 ◽  
Author(s):  
Koya Hashimoto ◽  
Daisuke Hayasaka ◽  
Yuji Eguchi ◽  
Yugo Seko ◽  
Ji Cai ◽  
...  

Recent studies have uncovered that biotic interaction strength varies over time in real ecosystems intrinsically and/or responding to anthropogenic disturbances. Little is known, however, about whether such interaction variability strengthens or weakens community resistance against disturbances. Here, we examine how the change in interaction strength after pesticide application mediates disturbance impacts on a freshwater community using outdoor mesocosms. We show that the change in interaction strength buffered the disturbance impact but amplified it once the disturbance severity exceeded a certain threshold. Importantly, we also show that interactions fluctuating more temporally under no disturbances were more changeable in response to pesticide applications. Our findings suggest that a severe disturbance may have a surprise impact on a biological community amplified by their own interaction variability, but the possibility still remains that we can predict the consequences of the disturbance by measuring the interaction variability before the disturbance occurs.


Author(s):  
C. M. Delgado-Martínez ◽  
E. Mendoza

Habitat loss and hunting are important drivers of mammal defaunation, affecting not only species presence but also their ecological roles. Frugivory is a key biotic interaction in the tropics due to its wide representation among mammals and its effects on forest dynamics. We assessed how human disturbance affects interactions between mammalian frugivores and Attalea butyracea fruit deposited on the forest floor by comparing visits to palms at two sites with contrasting levels of human disturbance (non–disturbed vs. disturbed sites) in the Lacandon rainforest in southern Mexico. Using camera traps, we recorded mammal species interacting with fruit and estimated their interaction strength. The frugivore ensemble was richer in the non–disturbed forest (nine species) than in the disturbed forest (four species), which lacked the largest body–sized mammals. Large–bodied mammals showed a stronger interaction with fruit in terms of the frequency and length of their visits. Our study highlights the need to undertake conservation actions not only to ensure that the species are maintained in disturbed forests but also to ensure that their biotic interactions remain unchanged.


2021 ◽  
Vol 13 (5) ◽  
pp. 2468
Author(s):  
Nguyen Hong Hai ◽  
Yousef Erfanifard ◽  
Van Bac Bui ◽  
Trinh Hien Mai ◽  
Any Mary Petritan ◽  
...  

Studying spatial patterns and habitat association of plant communities may provide understanding of the ecological mechanisms and processes that maintain species coexistence. To conduct assessments of correlation between community compositions and habitat association, we used data from two topographically different plots with 2 ha area in tropical evergreen forests with the variables recorded via grid systems of 10 × 10 m subplots in Northern-Central Vietnam. First, we tested the relationship between community composition and species diversity indices considering the topographical variables. We then assessed the interspecific interactions of 20 dominant plant species using the nearest-neighbor distribution function, Dij(r), and Ripley’s K-function, Kij(r). Based on the significant spatial association of species pairs, indices of interspecific interaction were calculated by the quantitative amounts of the summary statistics. The results showed that (i) community compositions were significantly influenced by the topographic variables and (ii) almost 50% significant pairs of species interactions were increased with increasing spatial scales up to 10–15 m, then declined and disappeared at scales of 30–40 m. Segregation and partial overlap were the dominant association types and disappeared at larger spatial scales. Spatial segregation, mixing, and partial overlap revealed the important species interactions in maintaining species coexistence under habitat heterogeneity in diverse forest communities.


1973 ◽  
Vol 51 (3) ◽  
pp. 333-347 ◽  
Author(s):  
John C. Holmes

That parasites actively select specific sites in their hosts is well known. Some parasites respond to changing conditions within the host by making diel or other short-term migrations, which may be modified by the presence of other parasites.Evidence is presented to support the hypothesis that continued interactions between parasites lead to niche diversification, and that site segregation, and consequently narrow site specificity, is an important part of niche specialization. The paucity of cases of interactive site segregation as compared with those of genetically stabilized selective site segregation suggests that parasite faunas are mature communities, the diversity of which has been established to an important extent through biotic interactions.


2007 ◽  
Vol 56 (1-6) ◽  
pp. 101-110 ◽  
Author(s):  
Chr. Wehenkel ◽  
F. Bergmann ◽  
H.-R. Gregorius

Abstract Studies on plant communities of various annual species suggest that there are particular biotic interactions among individuals from different species which could be the basis for long-term species coexistence. In the course of a large survey on species-genetic diversity relationships in several forest tree communities, it was found that statistically significant differences exist among isozyme genotype frequencies of conspecific tree groups, which differ only by species identity of their neighbours. Based on a specific measure, the association of the neighbouring species with the genotypes of the target species or that of the genotypes with the neighbouring species was quantified. Since only AAT and HEK of the five analysed enzyme systems differed in their genotype frequencies among several tree groups of the same target species, a potential involvement of their enzymatic function in the observed differences was discussed. The results of this study demonstrate a fine-scale genetic differentiation within single tree species of forest communities, which may be the result of biotic interactions between the genetic structure of a species and the species composition of its community. This observation also suggests the importance of intraspecific genetic variation for interspecific adaptation.


Sign in / Sign up

Export Citation Format

Share Document