scholarly journals Emergence ofβandγnetworks following multisensory training

2019 ◽  
Author(s):  
Daria La Rocca ◽  
Philippe Ciuciu ◽  
Denis Alexander Engemann ◽  
Virginie van Wassenhove

AbstractOur perceptual reality relies on inferences about the causal structure of the world given by multiple sensory inputs. In ecological settings, multisensory events that cohere in time and space benefit inferential processes: hearing and seeing a speaker enhances speech comprehension, and the acoustic changes of flapping wings naturally pace the motion of a flock of birds. Here, we asked how a few minutes of (multi)sensory training could shape cortical interactions in a subsequent perceptual task, and investigated oscillatory activity and functional connectivity as a function of sensory history in training. Human participants performed a visual motion coherence discrimination task while being recorded with magnetoencephalography (MEG). Three groups of participants performed the same task with visual stimuli only, while listening to acoustic textures temporally comodulated with the strength of visual motion coherence, or with auditory noise uncorrelated with visual motion. The functional connectivity patterns before and after training were contrasted to resting-state networks to assess the variability of common task-relevant networks, and the emergence of new functional inter-actions following training. One main finding is the emergence of a large-scale synchronization in the highγ(gamma: 60−120Hz) andβ(beta:15−30Hz) bands for individuals who underwent comodulated multisensory training. The post-training network involved prefrontal, parietal, and visual cortices. Our results suggest that the integration of evidence and decision-making strategies become more efficient following congruent multisensory training through plasticity in network routing and oscillatory regimes.

2017 ◽  
Vol 29 (11) ◽  
pp. 1829-1844 ◽  
Author(s):  
Gabriel Nascimento Costa ◽  
João Valente Duarte ◽  
Ricardo Martins ◽  
Michael Wibral ◽  
Miguel Castelo-Branco

In vision, perceptual features are processed in several regions distributed across the brain. Yet, the brain achieves a coherent perception of visual scenes and objects through integration of these features, which are encoded in spatially segregated brain areas. How the brain seamlessly achieves this accurate integration is currently unknown and is referred to as the “binding problem.” Among the proposed mechanisms meant to resolve the binding problem, the binding-by-synchrony hypothesis proposes that binding is carried out by the synchronization of distant neuronal assemblies. This study aimed at providing a critical test to the binding-by-synchrony hypothesis by evaluating long-range connectivity using EEG during a motion integration visual task that entails binding across hemispheres. Our results show that large-scale perceptual binding is not associated with long-range interhemispheric gamma synchrony. However, distinct perceptual interpretations were found to correlate with changes in beta power. Increased beta activity was observed during binding under ambiguous conditions and originates mainly from parietal regions. These findings reveal that the visual experience of binding can be identified by distinct signatures of oscillatory activity, regardless of long-range gamma synchrony, suggesting that such type of synchrony does not underlie perceptual binding.


NeuroImage ◽  
2021 ◽  
pp. 118299
Author(s):  
Roberto F. SALAMANCA-GIRON ◽  
Estelle RAFFIN ◽  
Sarah B. ZANDVLIET ◽  
Martin SEEBER ◽  
Christoph M. MICHEL ◽  
...  

2021 ◽  
Author(s):  
Michele Allegra ◽  
Chiara Favaretto ◽  
Nicholas Metcalf ◽  
Maurizio Corbetta ◽  
Andrea Brovelli

ABSTRACTNeuroimaging and neurological studies suggest that stroke is a brain network syndrome. While causing local ischemia and cell damage at the site of injury, stroke strongly perturbs the functional organization of brain networks at large. Critically, functional connectivity abnormalities parallel both behavioral deficits and functional recovery across different cognitive domains. However, the reasons for such relations remain poorly understood. Here, we tested the hypothesis that alterations in inter-areal communication underlie stroke-related modulations in functional connectivity (FC). To this aim, we used resting-state fMRI and Granger causality analysis to quantify information transfer between brain areas and its alteration in stroke. Two main large-scale anomalies were observed in stroke patients. First, inter-hemispheric information transfer was strongly decreased with respect to healthy controls. Second, information transfer within the affected hemisphere, and from the affected to the intact hemisphere was reduced. Both anomalies were more prominent in resting-state networks related to attention and language, and they were correlated with impaired performance in several behavioral domains. Overall, our results support the hypothesis that stroke perturbs inter-areal communication within and across hemispheres, and suggest novel therapeutic approaches aimed at restoring normal information flow.SIGNIFICANCE STATEMENTA thorough understanding of how stroke perturbs brain function is needed to improve recovery from the severe neurological syndromes affecting stroke patients. Previous resting-state neuroimaging studies suggested that interaction between hemispheres decreases after stroke, while interaction between areas of the same hemisphere increases. Here, we used Granger causality to reconstruct information flows in the brain at rest, and analyze how stroke perturbs them. We showed that stroke causes a global reduction of inter-hemispheric communication, and an imbalance between the intact and the affected hemisphere: information flows within and from the latter are impaired. Our results may inform the design of stimulation therapies to restore the functional balance lost after stroke.


2013 ◽  
Vol 15 (3) ◽  
pp. 301-313 ◽  

Neural oscillations at low- and high-frequency ranges are a fundamental feature of large-scale networks. Recent evidence has indicated that schizophrenia is associated with abnormal amplitude and synchrony of oscillatory activity, in particular, at high (beta/gamma) frequencies. These abnormalities are observed during task-related and spontaneous neuronal activity which may be important for understanding the pathophysiology of the syndrome. In this paper, we shall review the current evidence for impaired beta/gamma-band oscillations and their involvement in cognitive functions and certain symptoms of the disorder. In the first part, we will provide an update on neural oscillations during normal brain functions and discuss underlying mechanisms. This will be followed by a review of studies that have examined high-frequency oscillatory activity in schizophrenia and discuss evidence that relates abnormalities of oscillatory activity to disturbed excitatory/inhibitory (E/I) balance. Finally, we shall identify critical issues for future research in this area.


2018 ◽  
Vol 3 ◽  
pp. 50 ◽  
Author(s):  
Takamitsu Watanabe ◽  
Geraint Rees

Background: Despite accumulated evidence for adult brain plasticity, the temporal relationships between large-scale functional and structural connectivity changes in human brain networks remain unclear. Methods: By analysing a unique richly detailed 19-week longitudinal neuroimaging dataset, we tested whether macroscopic functional connectivity changes lead to the corresponding structural alterations in the adult human brain, and examined whether such time lags between functional and structural connectivity changes are affected by functional differences between different large-scale brain networks. Results: In this single-case study, we report that, compared to attention-related networks, functional connectivity changes in default-mode, fronto-parietal, and sensory-related networks occurred in advance of modulations of the corresponding structural connectivity with significantly longer time lags. In particular, the longest time lags were observed in sensory-related networks. In contrast, such significant temporal differences in connectivity change were not seen in comparisons between anatomically categorised different brain areas, such as frontal and occipital lobes. These observations survived even after multiple validation analyses using different connectivity definitions or using parts of the datasets. Conclusions: Although the current findings should be examined in independent datasets with different demographic background and by experimental manipulation, this single-case study indicates the possibility that plasticity of macroscopic brain networks could be affected by cognitive and perceptual functions implemented in the networks, and implies a hierarchy in the plasticity of functionally different brain systems.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Federica Contò ◽  
Grace Edwards ◽  
Sarah Tyler ◽  
Danielle Parrott ◽  
Emily Grossman ◽  
...  

Transcranial random noise stimulation (tRNS) can enhance vision in the healthy and diseased brain. Yet, the impact of multi-day tRNS on large-scale cortical networks is still unknown. We investigated the impact of tRNS coupled with behavioral training on resting-state functional connectivity and attention. We trained human subjects for 4 consecutive days on two attention tasks, while receiving tRNS over the intraparietal sulci, the middle temporal areas, or Sham stimulation. We measured resting-state functional connectivity of nodes of the dorsal and ventral attention network (DVAN) before and after training. We found a strong behavioral improvement and increased connectivity within the DVAN after parietal stimulation only. Crucially, behavioral improvement positively correlated with connectivity measures. We conclude changes in connectivity are a marker for the enduring effect of tRNS upon behavior. Our results suggest that tRNS has strong potential to augment cognitive capacity in healthy individuals and promote recovery in the neurological population.


2014 ◽  
Vol 26 (5) ◽  
pp. 1085-1099 ◽  
Author(s):  
Maureen Ritchey ◽  
Andrew P. Yonelinas ◽  
Charan Ranganath

Neural systems may be characterized by measuring functional interactions in the healthy brain, but it is unclear whether components of systems defined in this way share functional properties. For instance, within the medial temporal lobes (MTL), different subregions show different patterns of cortical connectivity. It is unknown, however, whether these intrinsic connections predict similarities in how these regions respond during memory encoding. Here, we defined brain networks using resting state functional connectivity (RSFC) then quantified the functional similarity of regions within each network during an associative memory encoding task. Results showed that anterior MTL regions affiliated with a network of anterior temporal cortical regions, whereas posterior MTL regions affiliated with a network of posterior medial cortical regions. Importantly, these connectivity relationships also predicted similarities among regions during the associative memory task. Both in terms of task-evoked activation and trial-specific information carried in multivoxel patterns, regions within each network were more similar to one another than were regions in different networks. These findings suggest that functional heterogeneity among MTL subregions may be related to their participation in distinct large-scale cortical systems involved in memory. At a more general level, the results suggest that components of neural systems defined on the basis of RSFC share similar functional properties in terms of recruitment during cognitive tasks and information carried in voxel patterns.


Sign in / Sign up

Export Citation Format

Share Document