scholarly journals Midgut Transcriptome Analysis ofClostera anachoretaTreated with Cry1Ac Toxin

2019 ◽  
Author(s):  
Liu Jie ◽  
Wang Liucheng ◽  
Zhou Guona ◽  
Liu Junxia ◽  
Gao Baojia

AbstractClostera anachoretais one of the important Lepidoptera insect pests in forestry, especially in poplars woods in China, Europe, Japan and India, et al, and also the target insect of Cry1Ac toxin and Bt plants. In this study, by using the different dosages of Btcry1Ac toxin to feed larvae and analyzing the transcriptome data, we found six genes, HSC70, GNB2L/RACK1, PNLIP, BI1-like, arylphorin type 2 and PKM, might be associated with Cry1Ac toxin. And PI3K-Akt pathway, which was highly enriched in DEGs and linked to several crucial pathways, including the B cell receptor signaling pathway, toll-like receptor pathway, and MAPK signaling pathway, might be involved in the recovery stage when response to sub-lethal Cry1Ac toxin. This is the first study conducted to specifically investigateC. anachoretaresponse to Cry toxin stress using large-scale sequencing technologies, and the results highlighted some important genes and pathway that could be involved in Btcry1Ac resistance development or could serve as targets for biologically-based control mechanisms of this insect pest.

1980 ◽  
Vol 112 (6) ◽  
pp. 573-584 ◽  
Author(s):  
Oswald N. Morris

AbstractStrategies for the use of entomopathogenic viruses in the management of forest insect pests include the use of viruses by themselves or with other biocontrol or chemical agents applied simultaneously or separately at strategic time intervals. It is concluded that baculoviruses (nuclear polyhedrosis and granulosis viruses) have considerable potential as components of integrated forest insect pest management systems. The prime limiting factors in their large scale use at present are the high cost of virus production and underdevelopment of application technology. Their greatest potential will probably be realized when used as an indirect, or preventative, strategy with a view to preventing the occurrence of pest emergency situations.


2021 ◽  
Vol 67 (2) ◽  
pp. 72-84
Author(s):  
Danail Takov ◽  
Daniela Pilarska ◽  
Andreas Linde ◽  
Marek Barta

Abstract The density of phytophagous insect pest populations is related (directly and indirectly) to several groups of factors that can be broadly divided into: abiotic, biotic and anthropogenic. Each extreme in the abiotic environment at a macro-level leads to a series of consecutive extremes in the biotic environment, which eventually results in micro-level responses in the individual organisms. The manifestation of factors acts in aggregate or in a sequence, creating a chain of processes around us. Insects very efficiently use the abundance of nutritional resources, resulting in a tremendous increase in their population density, and triggering control mechanisms through the emergence of parasitic and pathogenic infections (viruses, bacteria, fungi, microsporidia, protozoa and nematodes). The development of entomopathogenic infections in host populations is directly dependent on the characteristics of both the antagonist and the insect. It is associated with the lifestyle and life cycle of the insect, with features encoded in the mechanism of pathogen action, and limited by the pathogen’s virulence and pathogenicity.


2020 ◽  
Vol 70 (4) ◽  
pp. 385-400
Author(s):  
Yaodong Hu ◽  
Jiayu Su ◽  
Liyuan Cheng ◽  
Dan Lan ◽  
Diyan Li

Abstract The largest muscles in fowl are the pectorals, which provide the power required for birds to fly. Tibetan chickens show specific adaptations to high-altitude conditions, but changes in the muscle transcriptome associated with these adaptations have not been characterized yet. Therefore, in this study, we used next-generation sequencing technologies to generate eight libraries of mRNA sequences for four Tibetan chickens and four Beijing fatty chickens. A comprehensive transcriptome analysis was performed. In the eight samples, 12 333 annotated protein-coding genes were expressed. Among these, 48 differentially expressed genes were found; all of which were upregulated in Tibetan chickens. These differentially expressed genes were mainly involved in kidney morphogenesis, which indicates that hypoxia has an important effect on renal tubule development. Only nine genes were involved in Kyoto Encyclopedia of Genes and Genomes pathways, such as the endocytosis pathway, the MAPK signaling pathway, the calcium signaling pathway and the TGF-beta signaling pathway. The differentially expressed genes identified in this study will be used to facilitate future research into the Tibetan chicken.


2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Sudhendu Sharma ◽  
P. S. Shera ◽  
Rabinder Kaur ◽  
K. S. Sangha

Abstract Background Biological alternatives to pesticides in agriculture do not harm non-targets organisms including natural enemies of insect pests. Experiments were conducted at sugarcane fields during 2015 to 2019 to assess large scale biocontrol practices, involving inundative releases of trichogrammatids against lepidopteran borers in comparison to conventional chemical-based farmers’ practice. Main body Eight releases each of Trichogramma chilonis Ishii and Trichogramma japonicum Ashmead were made at 50,000 ha−1 at 10 days interval for the management of sugarcane stem borer, Chilo infuscatellus Snellen and the sugarcane top borer, Scirpophaga excerptalis (Fabricius) (Lepidoptera: Crambidae), respectively. Likewise, 10–12 releases of T. chilonis were made at 50,000 ha−1 at 10 days interval for the management of sugarcane stalk borer, Chilo auricilius Dudgeon (Lepidoptera: Crambidae). The biocontrol intervention was compared with farmer’s practice (chemical control) in managing these borers. The results showed that farmers’ practices and biocontrol treated fields resulted in a lower incidence of C. infuscatellus (1.1, 2.9%) and S excerptalis (1.7, 3.9%) than the untreated control fields, wherein the mean per cent incidence of these borers (6.8, 8.5%) was significantly higher. The incidence of C. auricilius was also lower in augmented fields (2.8%) than untreated fields (7.3%). The yield data indicated that farmers adopting biocontrol practices were able to get comparable yield and benefit: cost ratio than farmers’ practice, both being better than untreated control. Moreover, in biocontrol fields, parasitism rate on the factitious host, Corcyra cephalonica Stainton cards was estimated. Conclusion Thus, the study highlights the significance of adoption of biocontrol-based technology over a long run to provide sustainable system of sugarcane insect pest management and economic benefits to the stakeholders.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Siyi Zhang ◽  
Bo Wang ◽  
Jingsong Shi ◽  
Jing Li

The increased prevalence of obesity and type 2 diabetes (T2D) has become an important factor affecting the health of the human. Obesity is commonly considered as a major risk factor for the development of T2D. However, the molecular mechanisms of the disease relations are not well discovered yet. In this study, the combination of multiple differential expression profiles and a comprehensive biological network of obesity and T2D allowed us to identify and compare the disease-responsive active modules and subclusters. The results demonstrated that the connection between obesity and T2D mainly relied on several pathways involved in the digestive metabolism, immunization, and signal transduction, such as adipocytokine, chemokine signaling pathway, T cell receptor signaling pathway, and MAPK signaling pathways. The relationships of almost all of these pathways with obesity and T2D have been verified by the previous reports individually. We also found that the different parts in the same pathway are activated in obesity and T2D. The association of cancer, obesity, and T2D was identified too here. As a conclusion, our network-based method not only gives better support for the close connection between obesity and T2D, but also provides a systemic view in understanding the molecular functions underneath the links. It should be helpful in the development of new therapies for obesity, T2D, and the associated diseases.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Lin Luo ◽  
Wen-Hua Zhou ◽  
Jiang-Jia Cai ◽  
Mei Feng ◽  
Mi Zhou ◽  
...  

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM). It is not diagnosed or managed properly in the majority of patients because its pathogenesis remains controversial. In this study, human whole genome microarrays identified 2898 and 4493 differentially expressed genes (DEGs) in DM and DPN patients, respectively. A further KEGG pathway analysis indicated that DPN and DM share four pathways, including apoptosis, B cell receptor signaling pathway, endocytosis, and Toll-like receptor signaling pathway. The DEGs identified through comparison of DPN and DM were significantly enriched in MAPK signaling pathway, NOD-like receptor signaling pathway, and neurotrophin signaling pathway, while the “neurotrophin-MAPK signaling pathway” was notably downregulated. Seven DEGs from the neurotrophin-MAPK signaling pathway were validated in additional 78 samples, and the results confirmed the initial microarray findings. These findings demonstrated that downregulation of the neurotrophin-MAPK signaling pathway may be the major mechanism of DPN pathogenesis, thus providing a potential approach for DPN treatment.


2020 ◽  
Vol 5 (4) ◽  
pp. 530-534
Author(s):  
Jitendra Rajak

Globally the crop insect pests damage the 30% of agriculture production due to insect spoil, and the situation is very awful in particularly developing countries such as India.  There are large number of insect pest families are well known which induce the critical destroy to agriculture crops. Crop insect pest’s harm is one of the significant features that ruin the agriculture crop productivity, although the large-scale utilization of chemical pesticides. The successfulness of the pesticides depends upon the interaction of chemicals with the physiology of the insect of the pests. In India, the Nezara viridula Linn, is one of the critical insects because of its destructive feeding on major crop which is the utmost source of economic deprivation in agriculture. The enzymes present in the gut and salivary glands of the N. Viridula play key role in the feeding behaviour. Presently very little is investigated about the gut and salivary glands of the N. Viridula at minute level. We first time investigated the different enzymes existing in the gut and salivary gland using the chemical inference. This research work is carried out to analysis the enzymes for digestive and feeding behaviour of N. Viridula which will assist the biologists to manage the challenges are created by their resistance to the traditional chemical insecticides used for prevention of N. Viridula (a type of southern green stink bug) inhabitants and high reproductive amplitude. The extensive statistics of invertase enzymes, maltase, alpha galactosidase, amylase, esterase, proteinase and polypeptidase enzymes for the N. Viridula in salivary glands and gut inspired by this research imparts supplementary resource for further understanding of the biology of this Pentatomidae (Heteroptera) species.


2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Priya Lokare ◽  
Sumia Fatima

Mango saplings go through the many insect pests, fungal, bacterial diseases during nursery condition and these symptoms will persist till flowering and fruiting period and result in the huge economic losses. Majority mango saplings couldn’t reach upto flowering and fruiting stage it dies in the nursery conditions. This is major threat to the nursery owners because mango saplings having great demand all over the year, therefore buyers refuse to purchase diseased saplings. In the recent years the disease becomes severe in nursery plants, on young leaves, symptoms appear as irregular black necrotic spots on both sides. Pathogen present on the infected leaves, twig and fallen leaves serves as the major source of infection and spreads by rain splashed conidia. Survey was carried out to know the prevalence of diseases in nursery conditions for that Sanket Nursery Wakadi, Taluka Rahta was selected. There were 4 varieties of mango found in Sanket Nursery that were, Keshar, Payari, Mallika and Ratna. During the survey various fungal and insect pest diseases were observed. Anthracnose symptoms caused by Colletotrichum gloeosporioides, little leaf notcher, coconut scale, mango gall midge, white mango scale, stem blight, powdery mildew, hairy caterpillar etc. were found in large scale.


2020 ◽  
Vol 31 (1) ◽  
pp. 24-35 ◽  
Author(s):  
Somiahnadar Rajendran

Insects are a common problem in stored produce. The author describes the extent of the problem and approaches to countering it. Stored products of agricultural and animal origin, whether edible or non-edible, are favourite food for insect pests. Durable agricultural produce comprising dry raw and processed commodities and perishables (fresh produce) are vulnerable to insect pests at various stages from production till end-use. Similarly, different animal products and museum objects are infested mainly by dermestids. Insect pests proliferate due to favourable storage conditions, temperature and humidity and availability of food in abundance. In addition to their presence in food commodities, insects occur in storages (warehouses, silos) and processing facilities (flour mills, feed mills). Insect infestation is also a serious issue in processed products and packed commodities. The extent of loss in stored products due to insects varies between countries depending on favourable climatic conditions, and pest control measures adopted. In stored food commodities, insect infestation causes loss in quantity, changes in nutritional quality, altered chemical composition, off-odours, changes in end-use products, dissemination of toxigenic microorganisms and associated health implications. The insects contribute to contaminants such as silk threads, body fragments, hastisetae, excreta and chemical secretions. Insect activity in stored products increases the moisture content favouring the growth of moulds that produce mycotoxins (e.g., aflatoxin in stored peanuts). Hide beetle, Dermestes maculatus infesting silkworm cocoons has been reported to act as a carrier of microsporidian parasite Nosema bombycis that causes pebrine disease in silkworms. In dried fish, insect infestation leads to higher bacterial count and uric acid levels. Insects cause damage in hides and skins affecting their subsequent use for making leather products. The trend in stored product insect pest management is skewing in favour of pest prevention, monitoring, housekeeping and finally control. Hermetic storage system can be supplemented with CO2 or phosphine application to achieve quicker results. Pest detection and monitoring has gained significance as an important tool in insect pest management. Pheromone traps originally intended for detection of infestations have been advanced as a mating disruption device ensuing pest suppression in storage premises and processing facilities; pheromones also have to undergo registration protocols similar to conventional insecticides in some countries. Control measures involve reduced chemical pesticide use and more non-chemical inputs such as heat, cold/freezing and desiccants. Furthermore, there is an expanding organic market where physical and biological agents play a key role. The management options for insect control depend on the necessity or severity of pest incidence. Generally, nonchemical treatments, except heat, require more treatment time or investment in expensive equipment or fail to achieve 100% insect mortality. Despite insect resistance, environmental issues and residue problems, chemical control is inevitable and continues to be the most effective and rapid control method. There are limited options with respect to alternative fumigants and the alternatives have constraints as regards environmental and health concerns, cost, and other logistics. For fumigation of fresh agricultural produce, new formulations of ethyl formate and phosphine are commercially applied replacing methyl bromide. Resistance management is now another component of stored product pest management. In recent times, fumigation techniques have improved taking into consideration possible insect resistance. Insect control deploying nanoparticles, alone or as carriers for other control agents, is an emerging area with promising results. As there is no single compound with all the desired qualities, a necessity has arisen to adopt multiple approaches. Cocktail applications or combination treatments (IGRs plus organophosphorus insecticides, diatomaceous earth plus contact insecticides, nanoparticles plus insecticides/pathogens/phytocompounds and conventional fumigants plus CO2; vacuum plus fumigant) have been proved to be more effective. The future of store product insect pest management is deployment of multiple approaches and/or combination treatments to achieve the goal quickly and effectively.


Sign in / Sign up

Export Citation Format

Share Document