scholarly journals Dictyostelium discoideumflotillin homologues are essential for phagocytosis and participate in plasma membrane recycling and lysosome biogenesis

2019 ◽  
Author(s):  
Cristina Bosmani ◽  
Frauke Bach ◽  
Florence Leuba ◽  
Nabil Hanna ◽  
Frédéric Burdet ◽  
...  

ABSTRACTThe metazoan flotillins are lipid rafts residents involved in membrane trafficking and recycling of plasma membrane proteins.Dictyostelium discoideum, a social soil amoeba, uses phagocytosis to digest, kill and feed on bacteria.D. discoideumpossesses three flotillin-like proteins, termed VacA, VacB and the recently identified VacC. All three vacuolins gradually accumulate on postlysosomes and, like flotillins, are strongly associated with membranes and partly with lipid rafts. Vacuolins are absolutely required for uptake of various particles. Their absence impairs particle recognition possibly because of defective recycling of plasma membrane or cortex-associated proteins. In addition, vacuolins are involved in phagolysosome biogenesis, although this does not impact digestion and killing of a wide range of bacteria. Furthermore, vacuolin knockout affects early recruitment of the WASH complex on phagosomes, suggesting that vacuolins may be involved in the WASH-dependent plasma membrane recycling. Altogether, these results indicate that vacuolins act as the functional homologues of flotillins inD. discoideum.

Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1020 ◽  
Author(s):  
Ramirez ◽  
Sharma ◽  
Singh ◽  
Stoneham ◽  
Vollbrecht ◽  
...  

The plasma membrane is a site of conflict between host defenses and many viruses. One aspect of this conflict is the host’s attempt to eliminate infected cells using innate and adaptive cell-mediated immune mechanisms that recognize features of the plasma membrane characteristic of viral infection. Another is the expression of plasma membrane-associated proteins, so-called restriction factors, which inhibit enveloped virions directly. HIV-1 encodes two countermeasures to these host defenses: The membrane-associated accessory proteins Vpu and Nef. In addition to inhibiting cell-mediated immune-surveillance, Vpu and Nef counteract membrane-associated restriction factors. These include BST-2, which traps newly formed virions at the plasma membrane unless counteracted by Vpu, and SERINC5, which decreases the infectivity of virions unless counteracted by Nef. Here we review key features of these two antiviral proteins, and we review Vpu and Nef, which deplete them from the plasma membrane by co-opting specific cellular proteins and pathways of membrane trafficking and protein-degradation. We also discuss other plasma membrane proteins modulated by HIV-1, particularly CD4, which, if not opposed in infected cells by Vpu and Nef, inhibits viral infectivity and increases the sensitivity of the viral envelope glycoprotein to host immunity.


2006 ◽  
Vol 34 (3) ◽  
pp. 374-376 ◽  
Author(s):  
E.B. Babiychuk ◽  
A. Draeger

The spatial segregation of the plasma membrane plays a prominent role in distinguishing and sorting a large number of signals a cell receives simultaneously. The plasma membrane comprises regions known as lipid rafts, which serve as signal-transduction hubs and platforms for sorting membrane-associated proteins. Ca2+-binding proteins of the annexin family have been ascribed a role in the regulation of raft dynamics. Glycosylphosphatidylinositol-anchored 5′-nucleotidase is an extracellular, raft-associated enzyme responsible for conversion of extracellular ATP into adenosine. Our results point to a regulation of ecto-5′-nucleotidase activity by Ca2+-dependent, annexin-mediated stabilization of membrane rafts.


2019 ◽  
Vol 218 (4) ◽  
pp. 1138-1147 ◽  
Author(s):  
Ross T.A. Pedersen ◽  
David G. Drubin

The actin cytoskeleton generates forces on membranes for a wide range of cellular and subcellular morphogenic events, from cell migration to cytokinesis and membrane trafficking. For each of these processes, filamentous actin (F-actin) interacts with membranes and exerts force through its assembly, its associated myosin motors, or both. These two modes of force generation are well studied in isolation, but how they are coordinated in cells is mysterious. During clathrin-mediated endocytosis, F-actin assembly initiated by the Arp2/3 complex and several proteins that compose the WASP/myosin complex generates the force necessary to deform the plasma membrane into a pit. Here we present evidence that type I myosin is the key membrane anchor for endocytic actin assembly factors in budding yeast. By mooring actin assembly factors to the plasma membrane, this myosin organizes endocytic actin networks and couples actin-generated forces to the plasma membrane to drive invagination and scission. Through this unexpected mechanism, myosin facilitates force generation independent of its motor activity.


2003 ◽  
Vol 372 (2) ◽  
pp. 427-433 ◽  
Author(s):  
J. Paul CHAPPLE ◽  
Celene GRAYSON ◽  
Alison J. HARDCASTLE ◽  
Tracey A. BAILEY ◽  
Karl MATTER ◽  
...  

Mutations in the retinitis pigmentosa protein gene RP2 account for up to 15% of X-linked retinitis pigmentosa. RP2 is a novel protein of unknown function, which is targeted to the plasma membrane by dual N-terminal acyl-modification. Dual-acylated proteins are targeted to lipid rafts, and some are subject to polarized sorting. Therefore we investigated the organization of RP2 on the plasma membrane. Endogenous RP2 protein was predominantly localized at the plasma membrane, and exogenously expressed green-fluorescent-protein-tagged protein was also targeted to the membrane in a wide range of cultured cells. High levels of endogenous RP2 protein were present in HeLa cells and in the retinal pigment epithelium-derived cell line ARPE19. A significant proportion of RP2 in cultured neuroblastoma cells was associated with detergent-resistant membranes (DRMs), but much less than other dually acylated proteins (e.g. Lyn and Fyn). In contrast, the RP2-interacting protein Arl3 (ADP-ribosylation factor-like 3) was not found to be associated with DRMs. The association of RP2 with DRMs was cholesterol-dependent. In polarized epithelial cells in culture and in vivo, RP2 was present in both the apical and basolateral domains of the plasma membrane. These data show that RP2 is not specific to either domain, unlike some other dually acylated proteins. Interestingly, the level of RP2 protein increased in the epithelial cell line Caco-2 with differentiation and polarization. These data show that RP2 is present on the membrane of all cell types examined both in vitro and in vivo, and that RP2 associates with lipid rafts, suggesting a potential role for the protein in signal transduction.


2020 ◽  
Author(s):  
Amy N. Sinclair ◽  
Christine T. Huynh ◽  
Thomas E. Sladewski ◽  
Jenna L. Zuromski ◽  
Amanda E. Ruiz ◽  
...  

AbstractMicrotubules are inherently dynamic cytoskeletal polymers whose length and activity can be altered to perform essential functions in eukaryotic cells, such as providing tracks for intracellular trafficking and forming the mitotic spindle. Microtubules can be bundled to create more stable structures that collectively propagate force, such as in the flagellar axoneme, which provides motility. The subpellicular microtubule array of the protist parasite Trypanosoma brucei, the causative agent of African sleeping sickness, is a remarkable example of a highly specialized microtubule bundle, comprising a single microtubule layer that is crosslinked to each other and the plasma membrane. The array microtubules appear to be highly stable and remain intact throughout the cell cycle, but very little is known about the pathways that tune microtubule properties in trypanosomatids. Here, we show that the subpellicular microtubule array is organized into subdomains that consist of differentially localized array-associated proteins. We characterize the localization and function of the array-associated protein PAVE1, which is a component of the inter-microtubule crosslinking fibrils present within the posterior subdomain. PAVE1 functions to stabilize these microtubules to produce the tapered cell posterior. PAVE1 and the newly identified PAVE2 form a complex that binds directly to the microtubule lattice. TbAIR9, which localizes to the entirety of the subpellicular array, is necessary for retaining PAVE1 within the posterior subdomain, and also maintains array-associated proteins in the middle and anterior subdomains of the array. The arrangement of proteins within the array is likely to tune the local properties of the array microtubules and create the asymmetric shape of the cell, which is essential for parasite viability.Author summaryMany parasitic protists use arrays of microtubules that contact the inner leaflet of the plasma membrane, typically known as subpellicular microtubules, to shape their cells into forms that allow them to efficiently infect their hosts. While subpellicular arrays are found in a wide range of parasites, very little is known about how they are assembled and maintained. Trypanosoma brucei, which is the causative agent of human African trypanosomiasis, has an elaborate subpellicular array that produces the helical shape of the parasite, which is essential for its ability to move within crowded and viscous solutions. We have identified a series of proteins that have a range of localization patterns within the array, which suggests that the array is regulated by subdomains of array-associated proteins that may tune the local properties of the microtubules to suit the stresses found at different parts of the cell body. Among these proteins are the first known components of the inter-microtubule crosslinks that are thought to stabilize array microtubules, as well as a potential regulator of the array subdomains. These results establish a foundation to understand how subpellicular arrays are built, shaped, and maintained, which has not previously been appreciated.


Open Biology ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 210130
Author(s):  
Yuhei Nishimura ◽  
Daishi Yamakawa ◽  
Katsunori Uchida ◽  
Takashi Shiromizu ◽  
Masatoshi Watanabe ◽  
...  

Primary cilia, antenna-like structures of the plasma membrane, detect various extracellular cues and transduce signals into the cell to regulate a wide range of functions. Lipid rafts, plasma membrane microdomains enriched in cholesterol, sphingolipids and specific proteins, are also signalling hubs involved in a myriad of physiological functions. Although impairment of primary cilia and lipid rafts is associated with various diseases, the relationship between primary cilia and lipid rafts is poorly understood. Here, we review a newly discovered interaction between primary cilia and lipid raft dynamics that occurs during Akt signalling in adipogenesis. We also discuss the relationship between primary cilia and lipid raft-mediated Akt signalling in cancer biology. This review provides a novel perspective on primary cilia in the regulation of lipid raft dynamics.


2013 ◽  
Vol 4 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Thomas Fath

AbstractEukaryotic cells show a remarkable compartmentalization into compartments such as the cell nucleus, the Golgi apparatus, the endoplasmic reticulum, and endosomes. However, organelle structures are not the only means by which specialized compartments are formed. Recent research shows a critical role for diverse actin filament populations in defining functional compartments, here referred to as microcompartments, in a wide range of cells. These microcompartments are involved in regulating fundamental cellular functions including cell motility, plasma membrane organization, and cellular morphogenesis. In this overview, the importance of two multigene families of actin-associated proteins, tropomodulins and tropomyosins, their interactions with each other, and a large number of other proteins will be discussed in the context of generating specialized actin-based microcompartments.


2015 ◽  
Vol 57 ◽  
pp. 189-201 ◽  
Author(s):  
Jay Shankar ◽  
Cecile Boscher ◽  
Ivan R. Nabi

Spatial organization of the plasma membrane is an essential feature of the cellular response to external stimuli. Receptor organization at the cell surface mediates transmission of extracellular stimuli to intracellular signalling molecules and effectors that impact various cellular processes including cell differentiation, metabolism, growth, migration and apoptosis. Membrane domains include morphologically distinct plasma membrane invaginations such as clathrin-coated pits and caveolae, but also less well-defined domains such as lipid rafts and the galectin lattice. In the present chapter, we will discuss interaction between caveolae, lipid rafts and the galectin lattice in the control of cancer cell signalling.


Sign in / Sign up

Export Citation Format

Share Document