scholarly journals Genetic Mapping Of Morpho-Physiological Traits Involved During Reproductive Stage Drought Tolerance In Rice

2019 ◽  
Author(s):  
Saumya Ranjan Barik ◽  
Elssa Pandit ◽  
Shakti Prakash Mohanty ◽  
Sharat Kumar Pradhan ◽  
Trilochan Mohapatra

AbstractReproductive stage drought stress is an important factor for yield reduction in rice. Genetic mapping of drought responsive QTLs will help to develop cultivars suitable for drought prone environments through marker-assisted breeding. QTLs linked to morpho-physiological traits under drought stress were mapped by evaluating 190 F7 recombinant inbred lines (RIL). Significant variations were observed for eleven morpho-physiological traits involved during the stress. Bulked segregant analysis (BSA) strategy was adopted for genotyping the RIL population. A total of 401 SSR primers were tested for parental polymorphism of which 77 were polymorphic. Inclusive composite interval mapping detected a total of five consistent QTLs controlling leaf rolling (qLR9.1), leaf drying (qLD9.1), harvest index (qHI9.1), spikelet fertility (qSF9.1) and relative water content (qRWC9.1) under reproductive stage drought stress. Another two non-allelic QTLs controlling leaf rolling (qLR8.1) and leaf drying (qLD12.1) were linked in a single year. QTL controlling leaf rolling, qLR8.1 was validated in this mapping population and useful in marker-assisted breeding (MAB) programs. Out of these five consistent QTLs, four (qLR9.1, qLD9.1, qHI9.1 and qRWC9.1) were detected to be novel QTLs and useful for MAB for reproductive stage drought tolerance in rice.

PLoS ONE ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. e0214979 ◽  
Author(s):  
Saumya Ranjan Barik ◽  
Elssa Pandit ◽  
Sharat Kumar Pradhan ◽  
Shakti Prakash Mohanty ◽  
Trilochan Mohapatra

Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 64
Author(s):  
Priyanka Dwivedi ◽  
Naleeni Ramawat ◽  
Gaurav Dhawan ◽  
Subbaiyan Gopala Krishnan ◽  
Kunnummal Kurungara Vinod ◽  
...  

Reproductive stage drought stress (RSDS) is detrimental for rice, which affects its productivity as well as grain quality. In the present study, we introgressed two major quantitative trait loci (QTLs), namely, qDTY2.1 and qDTY3.1, governing RSDS tolerance in a popular high yielding non-aromatic rice cultivar, Pusa 44, through marker-assisted backcross breeding (MABB). Pusa 44 is highly sensitive to RSDS, which restricts its cultivation across drought-prone environments. Foreground selection was carried out using markers, RM520 for qDTY3.1 and RM 521 for qDTY2.1. Background selection was achieved with 97 polymorphic SSR markers in tandem with phenotypic selection to achieve faster recurrent parent genome (RPG) recovery. Three successive backcrosses followed by three selfings aided RPG recoveries of 98.6% to 99.4% among 31 near isogenic lines (NILs). Fourteen NILs were found to be significantly superior in yield and grain quality under RSDS with higher drought tolerance efficiency (DTE) than Pusa 44. Among these, the evaluation of two promising NILs in the multilocational trial during Kharif 2019 showed that they were significantly superior to Pusa 44 under reproductive stage drought stress, while performing on par with Pusa 44 under normal irrigated conditions. These di-QTL pyramided drought-tolerant NILs are in the final stages of testing the All India Coordinated Rice Improvement Project varietal trials for cultivar release. Alternately, the elite drought-tolerant Pusa 44 NILs will serve as an invaluable source of drought tolerance in rice improvement.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Aakriti Verma ◽  
M. Niranjana ◽  
S. K. Jha ◽  
Niharika Mallick ◽  
Priyanka Agarwal ◽  
...  

Abstract Leaf rolling is an important mechanism to mitigate the effects of moisture stress in several plant species. In the present study, a set of 92 wheat recombinant inbred lines derived from the cross between NI5439 × HD2012 were used to identify QTLs associated with leaf rolling under moisture stress condition. Linkage map was constructed using Axiom 35 K Breeder’s SNP Array and microsatellite (SSR) markers. A linkage map with 3661 markers comprising 3589 SNP and 72 SSR markers spanning 22,275.01 cM in length across 21 wheat chromosomes was constructed. QTL analysis for leaf rolling trait under moisture stress condition revealed 12 QTLs on chromosomes 1B, 2A, 2B, 2D, 3A, 4A, 4B, 5D, and 6B. A stable QTL Qlr.nhv-5D.2 was identified on 5D chromosome flanked by SNP marker interval AX-94892575–AX-95124447 (5D:338665301–5D:410952987). Genetic and physical map integration in the confidence intervals of Qlr.nhv-5D.2 revealed 14 putative candidate genes for drought tolerance which was narrowed down to six genes based on in-silico analysis. Comparative study of leaf rolling genes in rice viz., NRL1, OsZHD1, Roc5, and OsHB3 on wheat genome revealed five genes on chromosome 5D. Out of the identified genes, TraesCS5D02G253100 falls exactly in the QTL Qlr.nhv-5D.2 interval and showed 96.9% identity with OsZHD1. Two genes similar to OsHB3 viz. TraesCS5D02G052300 and TraesCS5D02G385300 exhibiting 85.6% and 91.8% identity; one gene TraesCS5D02G320600 having 83.9% identity with Roc5 gene; and one gene TraesCS5D02G102600 showing 100% identity with NRL1 gene were also identified, however, these genes are located outside Qlr.nhv-5D.2 interval. Hence, TraesCS5D02G253100 could be the best potential candidate gene for leaf rolling and can be utilized for improving drought tolerance in wheat.


2020 ◽  
Vol 18 (2) ◽  
pp. 63-70
Author(s):  
V. Sreenivasa ◽  
S. K. Lal ◽  
P. Kiran Babu ◽  
H. K. Mahadeva Swamy ◽  
Raju R. Yadav ◽  
...  

AbstractOccurrence of drought under rainfed conditions is the foremost factor responsible for yield reduction in soybean. Developing soybean cultivars with an inherent ability to withstand drought would immensely benefit the soybean production in rainfed areas. In the present study, F2 derived mapping populations were developed by crossing drought tolerant (PK 1180, SL 46) and susceptible (UPSL 298, PK 1169) genotypes to investigate the inheritance of seedling survival drought mechanisms and to identify simple-sequence repeat (SSR) markers associated with them, using bulked segregant analysis. Parents as well as a F2 derived mapping population were screened for drought tolerance based on seedling survivability under controlled conditions. Segregation analysis of F2 population derived from a cross between PK 1180 × UPSL 298 was previously shown to have a 3:1 tolerant to susceptible ratio and a probability of 0.61 at a χ2(3:1) value of 0.258. This was confirmed in another F2 population derived from a cross between PK 1169 × SL 46 with a χ2(3:1) value of 0.145 obtained at a probability of 0.70. One SSR marker Satt277 showed polymorphism between contracting bulks (tolerant and susceptible) out of 50 polymorphic markers identified during parental polymorphism. Single marker analysis suggested that the marker, Satt277 is linked to seedling survival drought tolerance and is located on chromosome linkage group C2 (chr 6) with a map distance of 3.40 cM. The tolerant genotypes identified could be used as a donor in soybean improvement programs. The marker identified can be used in marker-assisted selection while screening large collection of germplasm.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 202
Author(s):  
Gaurav Dhawan ◽  
Aruna Kumar ◽  
Priyanka Dwivedi ◽  
Subbaiyan Gopala Krishnan ◽  
Madan Pal ◽  
...  

Drought stress at the reproductive stage in rice is one of the most important cause for yield reduction, affecting both productivity and quality. All Basmati rice varieties, including the popular cultivar “Pusa Basmati 1 (PB1)” is highly sensitive to reproductive stage drought stress (RSDS). We report for the first time, improvement of a Basmati cultivar for RSDS tolerance, with the introgression of a major quantitative trait locus (QTL), “qDTY1.1” into PB1. The QTL was sourced from an aus variety, Nagina 22 (N22). A microsatellite (simple sequence repeat (SSR)) marker “RM 431” located at telomeric end (38.89 mb) of chromosome 1, and located within a 1.04 mb QTL region was employed for foreground selection for qDTY1.1 in the marker assisted backcross breeding process. A set of 113 SSR markers polymorphic between N22 and PB1 were utilized for background selection to ensure higher recurrent parent genome recovery. After three backcrosses followed by five generations of selfing, eighteen near isogenic lines (NILs) were developed, through combinatory selection for agro-morphological, grain and cooking quality traits. The NILs were evaluated for three consecutive Kharif seasons, 2017, 2018 and 2019 under well-watered and drought stress conditions. RSDS tolerance and yield stability indicated that P1882-12-111-3, P1882-12-111-5, P1882-12-111-6, P1882-12-111-7, P1882-12-111-12, P1882-12-111-15 and P1882-12-111-17 were best in terms of overall agronomic and grain quality under RSDS. Additionally, NILs exhibited high yield potential under normal condition as well. The RSDS tolerant Basmati NILs with high resilience to water stress, is a valuable resource for sustaining Basmati rice production under water limiting production environments.


BMC Genetics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Saumya Ranjan Barik ◽  
Elssa Pandit ◽  
Shakti Prakash Mohanty ◽  
Deepak Kumar Nayak ◽  
Sharat Kumar Pradhan

2021 ◽  
pp. 1-8
Author(s):  
Kehinde A. Adeboye ◽  
Olusegun A. Oduwaye ◽  
Isaac O. Daniel ◽  
Mamadou Fofana ◽  
Mande Semon

Abstract Ninety-eight high-yielding recombinant inbred lines (RILs) of WAB638-1/PRIMAVERA rice were evaluated with the parents under reproductive stage drought stress. The study aimed at characterizing flowering time response under drought stress and consequently classifying the genetic resources for efficient use in breeding programmes. Two field trials were conducted during the 2016 and 2017 dry seasons using the randomized complete block design with two replications. In 2016, 12 RILs were evaluated with the parents for the rooting attributes under drought stress and well-watered treatments. Analysis of variance revealed a significant (P < 0.05) variation among the genotypes for the traits evaluated. Drought stress reduced most of the characters in this study, including grain yield. However, the inbred lines exhibited considerable tolerance to drought stress as indicated by yield-related stress indexes, including stress susceptibility and drought tolerance indexes. Delayed flowering (FD) was recorded in 75 genotypes (including WAB638-1), while 25 genotypes (including PRIMAVERA) had no delay under drought stress compared to the control. The genotypes were grouped into flowering delay (D) genotypes (FD > 1 d) and no delay (N) genotypes (FD < 1 d), which significantly differ (P ⩽ 0.05) for numbers of days to 50% flowering. The flowering delay genotypes may be suitable for intermittent drought, while genotypes with little or no delay may be selected for terminal drought conditions. There was a significant correlation (r > 0.5) between the root length and number of days to 50% flowering. The study indicated that root parameters, such as the root length, may contribute to the drought adaptation mechanisms of the RILs.


Author(s):  
Gaurav Dhawan ◽  
Aruna Kumar ◽  
Priyanka Dwivedi ◽  
Subbaiyan Gopala Krishnan ◽  
Madan Pal ◽  
...  

Drought stress at the reproductive stage in rice is one of the most important cause for yield reduction, affecting both productivity and quality. All Basmati rice varieties, including the popular cultivar &lsquo;Pusa Basmati 1 (PB1)&rsquo; is highly sensitive to reproductive stage drought stress (RSDS). We report for the first time, improvement of a Basmati cultivar for RSDS tolerance, with the introgression of a major quantitative trait locus (QTL), &lsquo;qDTY1.1&rsquo; into PB1. The QTL donor was sourced from an aus variety, Nagina 22 (N22). A QTL linked microsatellite (SSR) marker &lsquo;RM 431&rsquo; was employed for foreground selection for qDTY1.1 in the marker assisted backcross breeding process. A set of 113 SSR markers polymorphic between N22 and PB1 were utilized for background selection to ensure higher genome recovery. After three backcrosses followed by five generations of selfing, eighteen near isogenic lines (NILs) were developed, through combinatory selection for agro-morphological, grain and cooking superiority traits. The NILs were evaluated for three consecutive Kharif seasons, 2017, 2018 and 2019 under well-watered and drought stress conditions. RSDS tolerance and yield stability indicated that NIL3, NIL5, NIL6, NIL7, NIL12, NIL15 and NIL17 were best in terms of overall agronomic and grain quality under RSDS. Additionally, NILs exhibited high yield potential under normal condition as well. The RSDS tolerant Basmati NILs with high resilience to water stress, is a valuable resource for sustaining Basmati rice production under water limiting production environments.


2019 ◽  
Vol 18 (3) ◽  
Author(s):  
M. Muchlish Adie ◽  
Ayda Krisnawati

In Indonesia, soybeans are typically cultivated during the dry season, thus making it prone to drought stress in the reproductive stage. The objective of the research was to characterize the agronomic characters of several soybean genotypes which were tolerant to drought at the reproductive stage. A total of 19 soybean genotypes were evaluated for its agronomic characters and tolerance to drought stress in Probolinggo (East Java, Indonesia) during the dry season (June – September). The research was arranged in a randomized block design with four replicates. Soybean cultivars were sown at two separate experiments, normal/optimal (plants were irrigated during the growth period) and stress (plants were irrigated up to 40 days after planting) conditions. Drought stress during the reproductive stage did not affect the characters of plant height, the number of branches per plant, the number of nodes per plant, and the number of pods per plant. Meanwhile, the number of empty pod, seed weight per plant, and seed yield were significantly affected. There were two genotypes which were identified as the tolerant genotypes to drought stress at the reproductive stage, i.e. MDT15-6-11 and MDT15-W-3034. The agronomic characters of MDT15-6-11 were showed as having a low percentage of yield reduction, hence it was able to mantain its high yield. The MDT15-W-3034 was identified as drought-tolerant due to the slow wilting, high plant character, a slow vegetative phase, and high yields. The genotypes obtained from this study could be recommended to be released as new soybean drought-tolerant varieties due to its high yield and tolerant to drought stress. Those genotypes could also be used as gene donors for soybean improvement to drought stress at the reproductive stage.  


Sign in / Sign up

Export Citation Format

Share Document