Inheritance and mapping of drought tolerance in soybean at seedling stage using bulked segregant analysis

2020 ◽  
Vol 18 (2) ◽  
pp. 63-70
Author(s):  
V. Sreenivasa ◽  
S. K. Lal ◽  
P. Kiran Babu ◽  
H. K. Mahadeva Swamy ◽  
Raju R. Yadav ◽  
...  

AbstractOccurrence of drought under rainfed conditions is the foremost factor responsible for yield reduction in soybean. Developing soybean cultivars with an inherent ability to withstand drought would immensely benefit the soybean production in rainfed areas. In the present study, F2 derived mapping populations were developed by crossing drought tolerant (PK 1180, SL 46) and susceptible (UPSL 298, PK 1169) genotypes to investigate the inheritance of seedling survival drought mechanisms and to identify simple-sequence repeat (SSR) markers associated with them, using bulked segregant analysis. Parents as well as a F2 derived mapping population were screened for drought tolerance based on seedling survivability under controlled conditions. Segregation analysis of F2 population derived from a cross between PK 1180 × UPSL 298 was previously shown to have a 3:1 tolerant to susceptible ratio and a probability of 0.61 at a χ2(3:1) value of 0.258. This was confirmed in another F2 population derived from a cross between PK 1169 × SL 46 with a χ2(3:1) value of 0.145 obtained at a probability of 0.70. One SSR marker Satt277 showed polymorphism between contracting bulks (tolerant and susceptible) out of 50 polymorphic markers identified during parental polymorphism. Single marker analysis suggested that the marker, Satt277 is linked to seedling survival drought tolerance and is located on chromosome linkage group C2 (chr 6) with a map distance of 3.40 cM. The tolerant genotypes identified could be used as a donor in soybean improvement programs. The marker identified can be used in marker-assisted selection while screening large collection of germplasm.

2021 ◽  
Vol 22 (6) ◽  
Author(s):  
Dwi Yono ◽  
Yogo Adhi Nugroho ◽  
Zulfikar Achmad Tanjung ◽  
Condro Utomo ◽  
Tony Liwang

Abstract. Yono D, Nugroho YA, Tanjung ZA, Utomo C, Liwang T. 2021. Genomewide SNP marker identification associated with drought tolerance in oil palm. Biodiversitas 22: 3138-3144. Drought stress is one of the abiotic stresses that frequently occurred in the oil palm plantation and has a negative impact on fresh fruit bunch (FFB) production.  Therefore, drought-tolerant palms are essential to be selected to mitigate this challenge. In Indonesia, several oil palm plantation areas have a dry climate, such as Lampung province.  Distinct yield performance palms were identified from well-recorded agronomic trials in these areas, where the palms are frequently exposed to drought stresses every year and lead them to suffer from water deficit response.  Group of high and low-yielding palms was selected based on FFB production of each palm for at least ten constitutive years. The double digest restriction amplified DNA (ddRAD) genotyping methods were used to capture the Single Nucleotide Polymorph (SNP) variant from pools of sample association datasets.  At least, 538k SNPs were identified from these pooled datasets. A bulked segregant analysis with a Case-Control approach was implemented to screen the contrast SNP profiles between both pools. A total of 56 association signals was selected from sequential filtering. These SNP sites are located in 21 genes. Further SNP validation and phenotypic verification are necessary to obtain SNPs marker for drought-tolerant palm selections.


2021 ◽  
Vol 17 (AAEBSSD) ◽  
pp. 245-251
Author(s):  
P. Venkata Ramana Rao ◽  
M. Girija Rani ◽  
K.S.N. Prasad ◽  
P. Naga Kumari ◽  
B.N.V.S.R. Ravi Kumar ◽  
...  

Drought is the largest abiotic constraint to rice production which cause significant yield loss depending upon the severity. Development of rice varieties with tolerance to drought and high use water use efficiency is the need of the hour. Despite the importance of drought as major abiotic constraint, the efforts to develop drought tolerant rice varieties are very low. Breeding efforts until recent past were focused on understanding and improvement of secondary traits that are putatively associated with drought tolerance. However, the genetic gain in yield by improvement of secondary traits is very low. Hence, improvement of yield per se under drought conditions will be better solution. Introgression of yield QTLs under drought in the genetic background of high yielding varieties will be helpful to overcome the problem to a certain extent. In the present study, 31 advanced back cross lines (BILs) derived from drought susceptible mega variety Samba Mahsuri (BT 5204) and a drought tolerant tolerant land race Azucena were evaluated under drought. Thirty one advanced back cross inbred lines (BC2F4) lines having yield QTLs viz., qDTY3.1 on chromosome 3 and qDTY2.1 on chromosome 2 were phenotyped under drought conditions. The results suggested that wide range of variation was observed for yield and its component traits in the BILs generated in the background of BPT 5204 and direct selection for yield under water stress coupled with marker assisted screening would help in development of drought tolerant version of mega varieties with improved yield under stress. Thermo tolerance studies indicated that high variability was observed for the BILs in terms of % seedling survival, % reduction in root and shoot growth under stress.


Author(s):  
H. B. Dinesh ◽  
H. C. Lohithaswa ◽  
K. P. Viswanatha ◽  
L. Manjunatha ◽  
D. S. Ambika ◽  
...  

Cowpea mosaic virus (CpMV) is known to cause yield loss of as much as 80-100 per cent. Among different approaches available in the management of this disease development and release of resistant varieties is the most viable option for farmers. Hence an investigation was carried out to study the inheritance of resistance to cowpea mosaic virus (CpMV) and to identify DNA markers linked to genomic regions conferring resistance to CpMV. The resistance was found to be governed by single recessive gene in the 191 F2:3 progenies derived from the cross C-152 (susceptible) × V-57817 (resistant). Single marker analysis with 191 F2 individuals and 106 polymorphic SSR markers indicated that two markers, MA15 and MA80 were linked to CpMV resistance as evidenced by significant mean sum of squares due to between marker classes and putative linkage of these markers for resistance to CpMV was confirmed by bulked segregant analysis. Through linkage map constructed utilizing 91 polymorphic SSR markers it was possible for us to show that the two markers MA15 and MA80 were included in the linkage group 6 and the marker gene was likely to be present between these markers. Marker assisted backcrossing was practiced to transfer resistance gene in to an agronomically superior variety C-152.


2021 ◽  
Vol 12 (1) ◽  
pp. 059-063
Author(s):  
D. Dev Kumar ◽  
◽  
V. Padma ◽  
H. S. Talwar ◽  
Farzana Jabeen ◽  
...  

An experiment was conducted during rabi 2012-13 at research farm of Indian Institute of Millet Research (IIMR), Rajendranagar, Hyderabad, Telengana State, India. The experiment was laid out in a split plot design, replicated thrice, with 10 Sorghum genotypes as main treatment Well-watered (WW) and Water-stress (WS) conditions) to examine the potential of Sorghum genotypes to adapt to the post flowering drought. 10 genotypes are sub-treatments CRS 4, CRS 19, CRS 20, PEC 17, CSV 18, M 35-1, Phule chitra, Phule moulee, EP 57 and CRS 1). Among the four stages viz., 10, 20, 30 and 40 days after flowering (DAF), the GLAR (stay green trait) at 10 DAF had a positive and higher significant correlation with grain yield (r=0.66). So, GLAR at 10 DAF is most appropriate stage to screen for post flowering drought tolerance. Among the yield components, number of grains per panicle, grain weight panicle-1 and harvest index (HI) are significantly and positively correlated with grain yield and therefore it can be ascribed that the genotypes, which partitioned more assimilates into economic parts and in which grain filling is high, recorded more grain yield. The overall yield reduction due to moisture stress during the post flowering drought was 10% and it ranged between 8-12% among the genotypes. This indicates that the genotypes used in the present study are relatively drought tolerant. The genotypes CSV 18 and Phule moulee registered least yield reduction (8%) in grain yield due to post flowering drought followed by PEC 17 and M 35-1 which registered 9% yield reduction. However, the overall grain yield of PEC 17 and M 35-1 was more than CSV 18 and Phule moulee even under moisture stress conditions.


Author(s):  
R.C. Meena ◽  
Supriya Ambawat ◽  
C. Tara Satyavathi ◽  
Moola Ram ◽  
Vikas Khandelwal ◽  
...  

Background: Pearl millet [Pennisetum glaucum (L.) Br.] is the most widely grown staple food of majority of poor and small land holders in Asia and Africa. It is also consumed as feed and fodder for livestock. It is the sixth most important cereal crop in the world next to maize, rice wheat, barley and sorghum. The temperature is one of the key climatic factors and has profound effect on the growth and development of the pearl millet. It can only be managed through developing hybrid varieties which can tolerate high temperature during germination and early seedling stages.The present study aimed to identify drought tolerant genotypes of pearl millet at seedling stage. Methods: This experiment was carried out at Mandor during kharif 2018 with five selected pearl millet advanced hybrids MH 2192, MH 2224, MH 2228, MH 2354 and MH 2359 along with three checks RHB 177, MPMH 17 and 86M86 which were tested under polyethylene glycol (PEG) (5% and 10%) induced osmotic stress. Various physiological parameters were recorded 15 days after sowing and statistical analysis made using Windostat software. Result: The results revealed that shoot length, seedling dry weight, relative water content, membrane stability index and chlorophyll content decreased significantly with PEG induced water stress in all the hybrids while root length and catalase activity increased significantly under water stress. Among 5 hybrids, two hybrids viz. MH 2359 and MH 2354 performed better and found to be superior under PEG induced water stress. Thus, various drought tolerance indices may further be studied for these two hybrids and can be used in development of drought tolerant genotypes which may prove helpful for crop improvement programs of pearl millet.


Weed Science ◽  
2014 ◽  
Vol 62 (2) ◽  
pp. 326-337 ◽  
Author(s):  
Andrew Reid ◽  
Victor Gonzalez ◽  
Peter H. Sikkema ◽  
Elizabeth A. Lee ◽  
Lewis Lukens ◽  
...  

Stress caused by early weed competition is known to delay the rate of maize development which may result in a decrease in kernel number. Kernel number in maize is correlated negatively with the length of the anthesis-silking interval (ASI). A short ASI has been identified as an easily measured, visual trait which may identify enhanced drought tolerance in maize. Field studies were conducted to test whether: (1) delaying weed control would result in a lengthening of ASI in both a drought tolerant and non-drought tolerant maize hybrid and (2) the presence of drought tolerance genetics comes at a physiological cost, resulting in a greater yield reduction under weedy conditions. In this study, the response of a drought tolerant hybrid with its non-drought tolerant near-isoline was compared to seven different timings of weed control using wheat as a surrogate competitor. Results confirmed that there was no treatment by hybrid interaction at any site–yr for any of the parameters evaluated. Delaying weed control reduced plant height, leaf tip number, shifted and reduced biomass accumulation, kernel number and grain yield and lengthened ASI for both hybrids. Although yield losses occurred with the delay in weed control timing, no yield differences were observed between hybrids suggesting that there was no additional physiological cost associated with the drought tolerant traits. The drought tolerant hybrid, however, was found to have a shorter ASI, lower kernel number and higher kernel wt compared to the non-drought tolerant hybrid. This study confirmed that delaying weed control can influence the length of ASI, which is an important drought tolerant trait. The lengthening of ASI by early weed competition resulted in a rate of yield loss of 0.13 T ha−1growing degree days (GDD)−1when averaged across both hybrids and all treatments.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1425
Author(s):  
Yasser S. Moursi ◽  
Samar G. Thabet ◽  
Ahmed Amro ◽  
Mona F. A. Dawood ◽  
P. Stephen Baenziger ◽  
...  

Drought induces several challenges for plant development, growth, and production. These challenges become more severe, in particular, in arid and semiarid countries like Egypt. In terms of production, barley ranks fourth after wheat, maize, and rice. Seed germination and seedling stages are critical stages for plant establishment and growth. In the current study, 60 diverse barley genotypes were tested for drought tolerance using two different treatments: control (0-PEG) and drought (20%-PEG). Twenty-two traits were estimated for seed germination and seedling parameters. All traits were reduced under drought stress, and a significant variation was found among genotypes under control and stress conditions. The broad-sense heritability estimates were very high under both control and drought for all traits. It ranged from 0.63 to 0.97 under the control condition and from 0.89 to 0.97 under drought, respectively. These high heritabilities suggested that genetic improvement of drought tolerance in barley at both stages is feasible. The principal component analysis revealed that root-related parameters account for the largest portion of phenotypic variation in this collection. The single-marker analysis (SMA) resulted in 71 quantitative trait loci (QTLs) distributed across the seven chromosomes of barley. Thirty-three QTLs were detected for root-length-related traits. Many hotspots of QTLs were detected for various traits. Interestingly, some markers controlled many traits in a pleiotropic manner; thus, they can be used to control multiple traits at a time. Some QTLs were constitutive, i.e., they are mapped under control and drought, and targeting these QTLs makes the selection for drought tolerance a single-step process. The results of gene annotation analysis revealed very potential candidate genes that can be targeted to select for drought tolerance.


2011 ◽  
Vol 38 (4) ◽  
pp. 261 ◽  
Author(s):  
Krishna S. V. Jagadish ◽  
Jill E. Cairns ◽  
Arvind Kumar ◽  
Impa M. Somayanda ◽  
Peter Q. Craufurd

Drought affected rice areas are predicted to double by the end of this century, demanding greater tolerance in widely adapted mega-varieties. Progress on incorporating better drought tolerance has been slow due to lack of appropriate phenotyping protocols. Furthermore, existing protocols do not consider the effect of drought and heat interactions, especially during the critical flowering stage, which could lead to false conclusion about drought tolerance. Screening germplasm and mapping-populations to identify quantitative trait loci (QTL)/candidate genes for drought tolerance is usually conducted in hot dry seasons where water supply can be controlled. Hence, results from dry season drought screening in the field could be confounded by heat stress, either directly on heat sensitive processes such as pollination or indirectly by raising tissue temperature through reducing transpirational cooling under water deficit conditions. Drought-tolerant entries or drought-responsive candidate genes/QTL identified from germplasm highly susceptible to heat stress during anthesis/flowering have to be interpreted with caution. During drought screening, germplasm tolerant to water stress but highly susceptible to heat stress has to be excluded during dry and hot season screening. Responses to drought and heat stress in rice are compared and results from field and controlled environment experiments studying drought and heat tolerance and their interaction are discussed.


2015 ◽  
Vol 38 (6) ◽  
Author(s):  
S. Pavithradevi ◽  
N. Manivannan ◽  
P. Vindhiya Varman ◽  
K. Ganesamurthy

Fifty genotypes of groundnut including released varieties and advanced breeding lines were used to assess th drought tolerance. These genotypes were evaluated both in managed drought stress (DS) and non stress (NS) situations during post rainy season (Jan- April), 2011 at Oilseeds Farm, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India. The drought stress was imposed by withholding irrigation after 60 days after sowing for t drought stress trial. Observations were recorded for pod yield per plant and kernel yield per plant on random chosen five plants per entry per replication. The data were subjected to ANOVA and drought tolerance parameter <italic>viz.</italic>, drought susceptibility index (DSI) for pod yield per plant and kernel yield per plant. The results indicated that genotypes differed significantly for pod and kernel yield per plant. Among the genotypes, 7 and 6 genotypes were observed as highly drought tolerant based on pod and kernel yield per plant respectively. A total of 6 and 9 genotypes recorded as highly susceptible to drought for pod and kernel yield per plant respectively. Among these genotypes, each three drought tolerant (ICGV 91114, K1375 and ICGV 02125) and drought susceptible (ICGV 01279, ICGV 98170 and ICGV 98175) genotypes were selected for hybridization programme to develop mapping populations.


2019 ◽  
Author(s):  
Saumya Ranjan Barik ◽  
Elssa Pandit ◽  
Shakti Prakash Mohanty ◽  
Sharat Kumar Pradhan ◽  
Trilochan Mohapatra

AbstractReproductive stage drought stress is an important factor for yield reduction in rice. Genetic mapping of drought responsive QTLs will help to develop cultivars suitable for drought prone environments through marker-assisted breeding. QTLs linked to morpho-physiological traits under drought stress were mapped by evaluating 190 F7 recombinant inbred lines (RIL). Significant variations were observed for eleven morpho-physiological traits involved during the stress. Bulked segregant analysis (BSA) strategy was adopted for genotyping the RIL population. A total of 401 SSR primers were tested for parental polymorphism of which 77 were polymorphic. Inclusive composite interval mapping detected a total of five consistent QTLs controlling leaf rolling (qLR9.1), leaf drying (qLD9.1), harvest index (qHI9.1), spikelet fertility (qSF9.1) and relative water content (qRWC9.1) under reproductive stage drought stress. Another two non-allelic QTLs controlling leaf rolling (qLR8.1) and leaf drying (qLD12.1) were linked in a single year. QTL controlling leaf rolling, qLR8.1 was validated in this mapping population and useful in marker-assisted breeding (MAB) programs. Out of these five consistent QTLs, four (qLR9.1, qLD9.1, qHI9.1 and qRWC9.1) were detected to be novel QTLs and useful for MAB for reproductive stage drought tolerance in rice.


Sign in / Sign up

Export Citation Format

Share Document