scholarly journals Relationship between Dynamic Instability of Individual Microtubules and Flux of Subunits into and out of Polymer

2019 ◽  
Author(s):  
Ava J. Mauro ◽  
Erin M. Jonasson ◽  
Holly V. Goodson

ABSTRACTBehaviors of dynamic polymers such as microtubules and actin are frequently assessed at one or both of two scales: (i) net assembly or disassembly of bulk polymer, (ii) growth and shortening of individual filaments. Previous work has derived various forms of an equation to relate the rate of change in bulk polymer mass (i.e., flux of subunits into and out of polymer, often abbreviated as “J”) to individual filament behaviors. However, these versions of this “J equation” differ in the variables used to quantify individual filament behavior, which correspond to different experimental approaches. For example, some variants of the J equation use dynamic instability parameters, obtained by following particular individuals for long periods of time. Another form of the equation uses measurements from many individuals followed over short time steps. We use a combination of derivations and computer simulations that mimic experiments to (i) relate the various forms of the J equation to each other; (ii) determine conditions under which these J equation forms are and are not equivalent; and (iii) identify aspects of the measurements that can affect the accuracy of each form of the J equation. Improved understanding of the J equation and its connections to experimentally measurable quantities will contribute to efforts to build a multi-scale understanding of steady-state polymer behavior.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 901
Author(s):  
Davide Bertini ◽  
Lorenzo Mazzei ◽  
Antonio Andreini

Computational Fluid Dynamics is a fundamental tool to simulate the flow field and the multi-physics nature of the phenomena involved in gas turbine combustors, supporting their design since the very preliminary phases. Standard steady state RANS turbulence models provide a reasonable prediction, despite some well-known limitations in reproducing the turbulent mixing in highly unsteady flows. Their affordable cost is ideal in the preliminary design steps, whereas, in the detailed phase of the design process, turbulence scale-resolving methods (such as LES or similar approaches) can be preferred to significantly improve the accuracy. Despite that, in dealing with multi-physics and multi-scale problems, as for Conjugate Heat Transfer (CHT) in presence of radiation, transient approaches are not always affordable and appropriate numerical treatments are necessary to properly account for the huge range of characteristics scales in space and time that occur when turbulence is resolved and heat conduction is simulated contextually. The present work describes an innovative methodology to perform CHT simulations accounting for multi-physics and multi-scale problems. Such methodology, named U-THERM3D, is applied for the metal temperature prediction of an annular aeroengine lean burn combustor. The theoretical formulations of the tool are described, together with its numerical implementation in the commercial CFD code ANSYS Fluent. The proposed approach is based on a time de-synchronization of the involved time dependent physics permitting to significantly speed up the calculation with respect to fully coupled strategy, preserving at the same time the effect of unsteady heat transfer on the final time averaged predicted metal temperature. The results of some preliminary assessment tests of its consistency and accuracy are reported before showing its exploitation on the real combustor. The results are compared against steady-state calculations and experimental data obtained by full annular tests at real scale conditions. The work confirms the importance of high-fidelity CFD approaches for the aerothermal prediction of liner metal temperature.



Author(s):  
Eisuke Higuchi ◽  
Hiroshi Yabuno ◽  
Yasuyuki Yamamoto ◽  
Sohei Matsumoto

Abstract In recent years, measurement methods that use resonators as microcantilevers have attracted attention because of their high sensitivity, high accuracy, and rapid response time. They have been widely utilized in mass sensing, stiffness sensing, and atomic force microscopy (AFM), among other applications. In all these methods, it is essential to accurately detect shifts in the natural frequency of the resonator caused by an external force from a measured object or sample. Experimental approaches based on self-excited oscillation enable the detection of these shifts even when the resonator is immersed in a high-viscosity environment. In the present study, we experimentally and theoretically investigate the nonlinear characteristics of a microcantilever resonator and their control by nonlinear feedback. We show that the steady-state response amplitude and the corresponding response frequency can be controlled by cubic nonlinear velocity feedback and cubic nonlinear displacement feedback, respectively. Furthermore, the amplitude and frequency of the steady-state self-excited oscillation can be controlled separately. These results will expand application of measurement methods that use self-excited resonators.



Author(s):  
T. Kavzoglu ◽  
M. Yildiz Erdemir ◽  
H. Tonbul

Within the last two decades, object-based image analysis (OBIA) considering objects (i.e. groups of pixels) instead of pixels has gained popularity and attracted increasing interest. The most important stage of the OBIA is image segmentation that groups spectrally similar adjacent pixels considering not only the spectral features but also spatial and textural features. Although there are several parameters (scale, shape, compactness and band weights) to be set by the analyst, scale parameter stands out the most important parameter in segmentation process. Estimating optimal scale parameter is crucially important to increase the classification accuracy that depends on image resolution, image object size and characteristics of the study area. In this study, two scale-selection strategies were implemented in the image segmentation process using pan-sharped Qickbird-2 image. The first strategy estimates optimal scale parameters for the eight sub-regions. For this purpose, the local variance/rate of change (LV-RoC) graphs produced by the ESP-2 tool were analysed to determine fine, moderate and coarse scales for each region. In the second strategy, the image was segmented using the three candidate scale values (fine, moderate, coarse) determined from the LV-RoC graph calculated for whole image. The nearest neighbour classifier was applied in all segmentation experiments and equal number of pixels was randomly selected to calculate accuracy metrics (overall accuracy and kappa coefficient). Comparison of region-based and image-based segmentation was carried out on the classified images and found that region-based multi-scale OBIA produced significantly more accurate results than image-based single-scale OBIA. The difference in classification accuracy reached to 10% in terms of overall accuracy.



1947 ◽  
Vol 15 (1-2) ◽  
pp. 18-23
Author(s):  
F. Steghart

It has recently been claimed that in modern high temperature-short time pasteurization plant fluctuations in temperature of the order of 1° F./sec. are unusual and probably artefacts, and that an instantaneous drop is certainly fictitious.It has, nevertheless, been shown that such rapid drops in temperature do in fact occur frequently in high temperature-short time plants of the type investigated. The plant investigated was not of the latest design incorporating devices for speeding up the control by injecting steam directly into the hot-water pipe.Temperature changes of the order of those in question were first observed by Mattick & Hiscox(1) of the National Institute for Research in Dairying, who carried out tests on pasteurization plant using a small mirror galvanometer with a very short time constant. The maximum rates of change were, however, not observed.



1996 ◽  
Vol 40 (01) ◽  
pp. 46-59 ◽  
Author(s):  
K. J. Spyrou

The dynamic stability of ships encountering large regular waves from astern is analyzed, with focus on delineating the specific conditions leading to the uncontrolled turn identified as broaching. The problem's formulation takes into account motions of the actively steered or controls-fixed vessel in surge-sway-yaw-roll with consideration of Froude-Krylov and diffraction wave excitation. Dynamical analysis of surf-riding is carried out for the general case of quartering waves, exploring the route periodic motions—surf riding, loss of stationary stability, turn, capsize. Steady-state and transient analysis is carried out in the system's multidimensional state-space in order to identify all existing limit sets and locate attracting domains. Broaching from periodic motions is also a part of the investigation.



1959 ◽  
Vol 14 (1) ◽  
pp. 109-115 ◽  
Author(s):  
John C. Mithoefer

The effect of carbonic anhydrase inhibition on carbon dioxide elimination by the lungs has been studied in dogs by the following four experimental approaches: 1) the alveolar pathway (PaOO2 and PaCOCO2) was measured during the hyperventilation which follows carbonic anhydrase inhibition and compared to the normal pathway at the same hyperventilation. 2) The alveolar gas tensions were measured following carbonic anhydrase inhibition when the ventilation was held constant. 3) The changes in PaCOCO2 were measured when the ventilation was suddenly, artificially changed to a new level in the presence of carbonic anhydrase inhibition and in normal animals. 4) The CO2 output was measured directly during the hyperventilation which results from carbonic anhydrase inhibition, during the same hyperventilation in the normal animal and following carbonic anhydrase inhibition when the ventilation is held constant. These experiments demonstrate an immediate fall in CO2 output relative to the ventilation when carbonic anhydrase is inhibited, resulting in CO2 retention until a new steady state has been reached. An hypothesis is presented to explain the effect of carbonic anhydrase inhibition on CO2 transport. Submitted on March 28, 1958



2017 ◽  
Vol 31 (14) ◽  
pp. 1750161 ◽  
Author(s):  
Yin Long ◽  
Xiao-Jun Zhang ◽  
Kui Wang

In this paper, theoretical solutions for degree distribution of decreasing random birth-and-death networks [Formula: see text] are provided. First, we prove that the degree distribution has the form of Poisson summation, for which degree distribution equations under steady state and probability generating function approach are employed. Then, based on the form of Poisson summation, we further confirm the tail characteristic of degree distribution is Poisson tail. Finally, simulations are carried out to verify these results by comparing the theoretical solutions with computer simulations.



Author(s):  
Hubert Sar ◽  
Andrzej Reński ◽  
Janusz Pokorski

This paper presents a method of identifying the dynamic characteristics of tyres for non-steady-state conditions on the basis of road measurements on a vehicle. The side force acting on the tyre is presented as a function of not only the slip angle but also the slip angle derivative (i.e. the velocity of the change in the slip angle). Hence, the influence of the manoeuvre dynamics on the tyre characteristics and the difference between the characteristics obtained for steady-state conditions and the characteristics for non-steady-state conditions are shown. Also the results of computer simulations prepared for different types of tyre characteristics are presented in this paper. It is evident from the presented graphs that applying dynamic non-linear tyre characteristics for computer simulations instead of steady-state characteristics enables us to describe the real motion of a vehicle better.



Sign in / Sign up

Export Citation Format

Share Document