scholarly journals A stealth adhesion factor contributes toVibrio vulnificuspathogenicity: Flp pili play roles in host invasion, survival in the blood stream and resistance to complement activation

2019 ◽  
Author(s):  
Tra–My Duong–Nu ◽  
Kwangjoon Jeong ◽  
Soo Young Kim ◽  
Wenzhi Tan ◽  
Sao Puth ◽  
...  

AbstractThe tad operons encode the machinery required for adhesive Flp (fimbrial low-molecular-weight protein) pili biogenesis.Vibrio vulnificus, an opportunistic pathogen, harbors three distincttadloci. Among them, onlytad1locus was highly upregulated inin vivogrowing bacteria compared toin vitroculture condition. To understand the pathogenic roles of the threetadloci during infection, we constructed single, double and triple tad loci deletion mutants. Interestingly, only theΔtad123triple mutant cells exhibited significantly decreased lethality in mice. Ultrastructural observations revealed short, thin filamentous projections disappeared on theΔtad123mutant cells. Since the pilin was paradoxically non-immunogenic, a V5 tag was fused to Flp to visualize the pilin protein by using immunogold EM and immunofluorescence microscopy. TheΔtad123mutant cells showed attenuated host cell adhesion, delayed RtxA1 exotoxin secretion and subsequently impaired translocation across the intestinal epithelium compared to wild type, which could be partially complemented with each wild type operon. TheΔtad123mutant was susceptible to complement-mediated bacteriolysis, predominantly via the alternative pathway, suggesting stealth hiding role of the Tad pili. Taken together, all threetadloci cooperate to confer successful invasion ofV. vulnificusinto deeper tissue and evasion from host defense mechanisms, ultimately resulting in septicemia.Author SummaryTo understand the roles of the three Tad operons in the pathogenesis ofV. vulnificusinfection, we constructed mutant strain with single, double and triple Tad loci deletions. Employing a variety of mouse infection models coupled with molecular genetic analyses, we demonstrate here that all three Tad operons are required forV. vulnificuspathogenicity as the cryptic pili contribute to host cell and tissue invasion, survival in the blood, and resistance to complement activation.

2002 ◽  
Vol 1 (6) ◽  
pp. 906-914 ◽  
Author(s):  
Thomas Schreiner ◽  
Martina R. Mohrs ◽  
Rosemarie Blau-Wasser ◽  
Alfred von Krempelhuber ◽  
Michael Steinert ◽  
...  

ABSTRACT Comitin is an F-actin binding and membrane-associated protein from Dictyostelium discoideum, which is present on Golgi and vesicle membranes and changes its localization in response to agents affecting the cytoskeleton. To investigate its in vivo functions we have generated knockout mutants by gene replacement. Based on comitin's in vitro functions we examined properties related to vesicular transport and microfilament function. Whereas cell growth, pinocytosis, secretion, chemotaxis, motility, and development were unaltered, comitin-lacking cells were impaired in the early steps of phagocytosis of Saccharomyces cerevisiae particles and of Escherichia coli, whereas uptake of latex beads was unaffected. Furthermore, the lack of comitin positively affected survival of pathogenic bacteria. Mutant cells also showed an altered response to hyperosmotic shock in comparison to the wild type. The redistribution of comitin during hyperosmotic shock in wild-type cells and its presence on early phagosomes suggest a direct involvement of comitin in these processes.


1998 ◽  
Vol 18 (10) ◽  
pp. 5771-5779 ◽  
Author(s):  
J. Cale Lennon ◽  
Megan Wind ◽  
Laura Saunders ◽  
M. Benjamin Hock ◽  
Daniel Reines

ABSTRACT Elongation factor SII interacts with RNA polymerase II and enables it to transcribe through arrest sites in vitro. The set of genes dependent upon SII function in vivo and the effects on RNA levels of mutations in different components of the elongation machinery are poorly understood. Using yeast lacking SII and bearing a conditional allele of RPB2, the gene encoding the second largest subunit of RNA polymerase II, we describe a genetic interaction between SII and RPB2. An SII gene disruption or therpb2-10 mutation, which yields an arrest-prone enzyme in vitro, confers sensitivity to 6-azauracil (6AU), a drug that depresses cellular nucleoside triphosphates. Cells with both mutations had reduced levels of total poly(A)+ RNA and specific mRNAs and displayed a synergistic level of drug hypersensitivity. In cells in which the SII gene was inactivated, rpb2-10 became dominant, as if template-associated mutant RNA polymerase II hindered the ability of wild-type polymerase to transcribe. Interestingly, while 6AU depressed RNA levels in both wild-type and mutant cells, wild-type cells reestablished normal RNA levels, whereas double-mutant cells could not. This work shows the importance of an optimally functioning elongation machinery for in vivo RNA synthesis and identifies an initial set of candidate genes with which SII-dependent transcription can be studied.


Blood ◽  
1975 ◽  
Vol 45 (6) ◽  
pp. 843-849 ◽  
Author(s):  
RG Strauss ◽  
AM Mauer ◽  
T Asbrock ◽  
RE Spitzer ◽  
AE Stitzel

Abstract The reduction of nitroblue tetrazolium dye by human neutrophils was measured in the presence of serum in which the complement system had been activated through the alternate pathway by interaction with inulin. Neutrophils incubated with serum inulin supernatants reduced the dye and showed a general increase in oxidative metabolism. The oxidation of glucose-1–14-C by supernatant prepared from selectively depleted sera indicated that the neutrophil-stimulating factor(s) was generated through the alternate pathway of complement activation. The possibility that inulun had been ingested as a particle was ruled out by light microscopy and radiolabeling studies. The failure of neutrophils stimulated by the serum-inulun supernatants to migrate after exposure to a chemotactic agent suggested that the site of neutrophil-complement interaction was on the cell membrane. It is concluded from these results that biologically active fragments generated through the alternative pathway of complement activation can stimulate neutrophil metabolism in the absence of phagocytosis. Interaction of such fragments with circulating neutrophils in vivo and the subsequent metabolic activation of these cells is one explanation for the spontaneous reduction of nitroblue tetrazolium dye in vitro by neutrophils from patients with certain infections and inflammatory disorders.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 394-394
Author(s):  
Lurong Lian ◽  
Yanfeng Wang ◽  
Xinsheng Chen ◽  
Tami Bach ◽  
Laurie Lenox ◽  
...  

Abstract Pleckstrin is a 40 kDa phosphoprotein containing amino- and carboxyl-terminal Pleckstrin Homology (PH) domains separated by a DEP domain. Pleckstrin’s expression is restricted to platelets and leukocytes, and represents approximately 1% of total cellular protein within these cells. Following platelet and leukocyte activation, PKC rapidly phosphorylates pleckstrin inducing it to bind membrane bound phospholipids such as phosphatidylinositol 4,5 bisphosphate (PIP2). Heterologously expressed phosphorylated pleckstrin colocalized with integrins and induces cytoskeletal reorganization. To better define the role of pleckstrin in vivo, we introduced a loss-of-function mutation into the murine pleckstrin gene. Pleckstrin-null mice were present in offspring at a frequency consistent with a Mendelian inheritance pattern. Adult pleckstrin −/− mice had 32% lower platelet counts than their littermates, but exhibited no spontaneous hemorrhage. Given the role of PKC and phospholipid second messengers on cytoskeletal dynamics, and our observations of pleckstrin overexpression in cell lines, we analyzed whether loss of pleckstrin affected cell spreading. Pleckstrin −/− platelets spread extremely poorly upon immobilized fibrinogen, and rarely exhibited broad membrane extensions. Granulocytes from pleckstrin −/− mice also have a spreading defect, as well as impaired ability to generate reactive oxygen species in the response to TNFα. Knockout B-cells, CD4-T-cells, and CD8-T-cells all migrated approximately 30% as efficiently as wild type cells in response to a gradient of SDF-1α in a transwell assay. These data suggest that loss of pleckstrin causes cytoskeletal defects in cells of multiple hematopoietic lineages. Analyzing whether this caused a functional defect, we found that pleckstrin −/− platelets exhibited a 22% dense- and 24% alpha-granule exocytosis defect, and a 35% defect in thrombin-induced calcium entry. In spite of these abnormalities, platelets changed shape and aggregated normally after stimulation with thrombin, ADP, or collagen in vitro. Pleckstrin knockout platelets did have a markedly impaired aggregation response following exposure to the PKC stimulant, PMA. This suggested that pleckstrin is a critical effector for PKC-mediated aggregation, but another pathway is able to compensate for this loss of pleckstrin following agonist stimulation. We reasoned that the alternative pathway might also utilize PIP2-dependent second messengers. Since the phosphorylation of PIP2 by PI3K generates second messengers that also contribute to platelet aggregation, we tested whether PI3K compensated for the loss of pleckstrin. We found that the PI3K inhibitor, LY294002 profoundly impaired the aggregation of pleckstrin knockout platelets in response to stimulation of the thrombin receptor. In contrast, the PI3K inhibitor minimally affected wild type platelets. This demonstrates that second messengers generated by PI3K are able to compensate for loss of pleckstrin. This also demonstrates that thrombin-induced platelet aggregation can be mediated by one of two parallel pathways, one involving PKC and pleckstrin, and the other involving PI3K. Together, our results show that pleckstrin is an essential component of PKC-mediated platelet activation and signals directed to the cytoskeleton.


2008 ◽  
Vol 415 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Rudi A. Baron ◽  
Miguel C. Seabra

Prenylation (or geranylgeranylation) of Rab GTPases is catalysed by RGGT (Rab geranylgeranyl transferase) and requires REP (Rab escort protein). In the classical pathway, REP associates first with unprenylated Rab, which is then prenylated by RGGT. In the alternative pathway, REP associates first with RGGT; this complex then binds and prenylates Rab proteins. In the present paper we show that REP mutants defective in RGGT binding (REP1 F282L and REP1 F282L/V290F) are unable to compete with wild-type REP in the prenylation reaction in vitro. When over-expressed in cells, REP wild-type and mutants are unable to form stable cytosolic complexes with endogenous unprenylated Rabs. These results suggest that the alternative pathway may predominate in vivo. We also extend previous suggestions that GGPP (geranylgeranyl pyrophosphate) acts as an allosteric regulator of the prenylation reaction. We observed that REP–RGGT complexes are formed in vivo and are unstable in the absence of intracellular GGPP. RGGT increases the ability of REP to extract endogenous prenylated Rabs from membranes in vitro by stabilizing a soluble REP–RGGT–Rab-GG (geranylgeranylated Rab) complex. This effect is regulated by GGPP, which promotes the dissociation of RGGT and REP–Rab-GG to allow delivery of prenylated Rabs to membranes.


1992 ◽  
Vol 3 (12) ◽  
pp. 1455-1462 ◽  
Author(s):  
E W Kubalek ◽  
T Q Uyeda ◽  
J A Spudich

We used molecular genetic approaches to delete 521 amino acid residues from the proximal portion of the Dictyostelium myosin II tail. The deletion encompasses approximately 40% of the tail, including the S2-LMM junction, a region that in muscle myosin II has been proposed to be important for contraction. The functions of the mutant myosin II are indistinguishable from the wild-type myosin II in our in vitro assays. It binds to actin in a typical rigor configuration in the absence of ATP and it forms filaments in a normal salt-dependent manner. In an in vitro motility assay, both monomeric and filamentous forms of the mutant myosin II translocate actin filaments at 2.4 microns/s at 30 degrees C, similar to that of wild-type myosin II. The mutant myosin II is also functional in vivo. Cells expressing the mutant myosin II in place of the native myosin II perform myosin II-dependent activities such as cytokinesis and formation of fruiting bodies, albeit inefficiently. Growth of the mutant cells in suspension gives rise to many large multinucleated cells, demonstrating that cytokinesis often fails. The majority of the fruiting bodies are also morphologically abnormal. These results demonstrate that this region of the myosin II tail is not required for motile activities but its presence is necessary for optimum function in vivo.


2008 ◽  
Vol 77 (3) ◽  
pp. 1061-1070 ◽  
Author(s):  
Kileen L. Mershon ◽  
Alex Vasuthasawat ◽  
Gregory W. Lawson ◽  
Sherie L. Morrison ◽  
David O. Beenhouwer

ABSTRACT Previous studies have shown that the alternative pathway of complement activation plays an important role in protection against infection with Cryptococcus neoformans. Cryptococcus gattii does not activate the alternative pathway as well as C. neoformans in vitro. The role of complement in C. gattii infection in vivo has not been reported. In this study, we used mice deficient in complement components to investigate the role of complement in protection against a C. gattii isolate from an ongoing outbreak in northwestern North America. While factor B-deficient mice showed an enhanced rate of death, complement component C3-deficient mice died even more rapidly, indicating that the alternative pathway was not the only complement pathway contributing to protection against disease. Both C3- and factor B-deficient mice had increased fungal burdens in comparison to wild-type mice. Histopathology revealed an overwhelming fungal burden in the lungs of these complement-deficient mice, which undoubtedly prevented efficient gas exchange, causing death. Following the fate of radiolabeled organisms showed that both factor B- and C3-deficient mice were less effective than wild-type mice in clearing organisms. However, opsonization of C. gattii with complement components was not sufficient to prolong life in mice deficient in complement. Killing of C. gattii by macrophages in vitro was decreased in the presence of serum from factor B- and C3-deficient versus wild-type mice. In conclusion, we have demonstrated that complement activation is crucial for survival in C. gattii infection. Additionally, we have shown that the alternative pathway of complement activation is not the only complement pathway contributing to protection.


1989 ◽  
Vol 109 (6) ◽  
pp. 2653-2664 ◽  
Author(s):  
R J Deshaies ◽  
R Schekman

Yeast sec62 mutant cells are defective in the translocation of several secretory precursor proteins into the lumen of the endoplasmic reticulum (Rothblatt et al., 1989). The deficiency, which is most restrictive for alpha-factor precursor (pp alpha F) and preprocarboxypeptidase Y, has been reproduced in vitro. Membranes isolated from mutant cells display low and labile translocation activity with pp alpha F translated in a wild-type cytosol fraction. The defect is unique to the membrane fraction because cytosol from mutant cells supports translocation into membranes from wild-type yeast. Invertase assembly is only partly affected by the sec62 mutation in vivo and is nearly normal with mutant membranes in vitro. A potential membrane location for the SEC62 gene product is supported by evaluation of the molecular clone. DNA sequence analysis reveals a 32-kD protein with no obvious NH2-terminal signal sequence but with two domains of sufficient length and hydrophobicity to span a lipid bilayer. Sec62p is predicted to display significant NH2- and COOH-terminal hydrophilic domains on the cytoplasmic surface of the ER membrane. The last 30 amino acids of the COOH terminus may form an alpha-helix with 14 lysine and arginine residues arranged uniformly about the helix. This domain may allow Sec62p to interact with other proteins of the putative translocation complex.


2020 ◽  
Author(s):  
Melissa Castiglione ◽  
Haotian Zhang ◽  
Huichun Zhan

AbstractThe myeloproliferative neoplasms (MPNs) are clonal stem cell disorders characterized by overproduction of mature blood cells and increased risk of transformation to frank leukemia. The acquired kinase mutation JAK2V617F plays a central role in a majority of these disorders. The hematopoietic stem cell (HSC) compartment in MPN is heterogeneous with the presence of both JAK2 wild-type and JAK2V617F mutant cells in most patients with MPN. Utilizing in vitro co-culture assays and in vivo competitive transplantation assays, we found that the presence of wild-type cells altered the behavior of co-existing JAK2V617F mutant cells, and a mutant microenvironment (niche) could overcome the competition between wild-type and mutant cells, leading to mutant clonal expansion and overt MPN. We also demonstrated that competition between wild-type and JAK2V617F mutant cells triggered a significant immune response, and there was a dynamic PD-L1 deregulation in the mutant stem/progenitor cells caused by their interactions with the neighboring wild-type cells and the microenvironment. Therefore, while accumulation of oncogenic mutations is unavoidable during aging, our data suggest that, if we could therapeutically enhance normal cells’ ability to compete, we might be better able to control neoplastic cell expansion and prevent the development of a full-blown malignancy.Key PointsThe presence of wild-type cells alters the behavior of co-existing JAK2V617F mutant cellsA mutant microenvironment overcomes the competition between wild-type and JAK2V617F mutant cells, leading to the development of a MPN


2018 ◽  
Vol 1 (1) ◽  
pp. 43-62 ◽  
Author(s):  
Sofiya Matviykiv ◽  
Marzia Buscema ◽  
Gabriela Gerganova ◽  
Tamás Mészáros ◽  
Gergely Tibor Kozma ◽  
...  

Liposomal drug delivery systems can protect pharmaceutical substances and control their release. Systemic administration of liposomes, however, often activate the innate immune system, resulting in hypersensitivity reactions. These pseudo-allergic reactions can be interpreted as activating the complement system. Complement activation destroys and eliminates foreign substances, either directly through opsonization and the formation of the membrane attack complex (MAC), or by activating leukocytes and initiating inflammatory responses via mediators, such as cytokines. In this study, we investigated the in vitro immune toxicity of the recently synthesized Rad-PC-Rad liposomes, analyzing the liposome-induced complement activation. In five human sera, Rad-PC-Rad liposomes did not induce activation, but in one serum high sensitivity via alternative pathway was detected. Such a behavior in adverse phenomena is characteristic for patient-to-patient variation and, thus, the number of donors should be in the order of hundreds rather than tens, hence the present study based on six donors is preliminary. In order to further prove the suitability of mechano-responsive Rad-PC-Rad liposomes for clinical trials, the production of pro-inflammatory cytokines was examined by human white blood cells. The concentrations of the pro-inflammatory cytokines, IL-6, IL-12p70, TNF-α, and IL-1β, induced by Rad-PC-Rad liposomal formulations, incubated with whole blood samples, were smaller or comparable to saline (negative control). Because of this favorable in vitro hemo-compatibility, in vivo investigations using these mechano-responsive liposomes should be designed.


Sign in / Sign up

Export Citation Format

Share Document