scholarly journals Broken force dispersal network in tip-links by the mutations induces hearing-loss

2019 ◽  
Author(s):  
Jagadish P. Hazra ◽  
Amin Sagar ◽  
Nisha Arora ◽  
Debadutta Deb ◽  
Simerpreet Kaur ◽  
...  

AbstractTip-link as force-sensor in the hearing conveys the mechanical force originating from sound to ion-channels while maintaining the integrity of the entire sensory assembly in inner-ear. This delicate balance between structure and function of tip-links is regulated by Ca2+-ions present in endolymph. Mutations at the Ca2+-binding sites of tip-links often lead to congenital deafness, sometimes syndromic defects impairing vision along with hearing. Although such mutations are already identified, it is still not clear how the mutants alter the structure-function properties of the force-sensors associated with diseases. With an aim to decipher the differences in force-conveying properties of the force-sensors in molecular details, we identified the conformational variability of mutant and wild-type tip-links at the single-molecule level using FRET at the endolymphatic Ca2+ concentrations and subsequently measured the force-responsive behavior using single-molecule force spectroscopy with an AFM. AFM allowed us to mimic the high and wide range of force ramps (103 - 106 pN.s−1) as experienced in the inner ear. We performed in silico network analyses to learn that alterations in the conformations of the mutants interrupt the natural force-propagation paths through the sensors and make the mutant tip-links vulnerable to input forces from sound stimuli. We also demonstrated that a Ca2+ rich environment can restore the force-response of the mutant tip-links which may eventually facilitate the designing of better therapeutic strategies to the hearing loss.Significance StatementForce-sensors in inner ear are the key components in the hearing. Mutations in force-sensors often lead to congenital hearing loss. Loss of hearing has become a threat to humanity, with over 5% of world population suffering from deafness and 40% of which is congenital, primarily due to mutations in the sensory machinery in inner-ear. A better understanding of the molecular mechanism of the underlined hearing loss due to mutations is, therefore, necessary for better therapeutics to deaf. Here with a zoomed region of the force-sensors, we pointed out the differences in the force-propagation properties of the mutant and wild-type force-sensors. Our observation on restoring of functions of mutants in Ca2+-rich buffer indicates methods of developing low-cost therapeutic strategies against deafness.

2019 ◽  
Vol 476 (16) ◽  
pp. 2411-2425 ◽  
Author(s):  
Jagadish P. Hazra ◽  
Amin Sagar ◽  
Nisha Arora ◽  
Debadutta Deb ◽  
Simerpreet Kaur ◽  
...  

Abstract Tip-link as force-sensor in hearing conveys the mechanical force originating from sound to ion-channels while maintaining the integrity of the entire sensory assembly in the inner ear. This delicate balance between structure and function of tip-links is regulated by Ca2+-ions present in endolymph. Mutations at the Ca2+-binding sites of tip-links often lead to congenital deafness, sometimes syndromic defects impairing vision along with hearing. Although such mutations are already identified, it is still not clear how the mutants alter the structure-function properties of the force-sensors associated with diseases. With an aim to decipher the differences in force-conveying properties of the force-sensors in molecular details, we identified the conformational variability of mutant and wild-type tip-links at the single-molecule level using FRET at the endolymphatic Ca2+ concentrations and subsequently measured the force-responsive behavior using single-molecule force spectroscopy with an Atomic Force Microscope (AFM). AFM allowed us to mimic the high and wide range of force ramps (103–106 pN s−1) as experienced in the inner ear. We performed in silico network analysis to learn that alterations in the conformations of the mutants interrupt the natural force-propagation paths through the sensors and make the mutant tip-links vulnerable to input forces from sound stimuli. We also demonstrated that a Ca2+ rich environment can restore the force-response of the mutant tip-links which may eventually facilitate the designing of better therapeutic strategies to the hearing loss.


2017 ◽  
Author(s):  
Irit Hochberg ◽  
Leigh A. M. Demain ◽  
Jill E. Urquhart ◽  
Albert Amberger ◽  
Andrea J. Deutschmann ◽  
...  

AbstractPerrault syndrome is a rare autosomal recessive condition characterised by sensorineural hearing loss in both sexes and primary ovarian insufficiency in 46 XX, females. It is genetically heterogeneous with biallelic variants in six genes identified to date (HSD17B4, HARS2, LARS2, CLPP, C10orf2 and ERAL1). Most genes possessing variants associated with Perrault syndrome are involved in mitochondrial translation. We describe a consanguineous family with three affected individuals homozygous for a novel missense variant c.1454C>T; p.(Ala485Val) in KIAA0391, encoding proteinaceous RNase P (PRORP), the metallonuclease subunit of the mitochondrial RNase P complex, responsible for the 5’-end processing of mitochondrial precursor tRNAs. In RNase P activity assays, RNase P complexes containing the PRORP disease variant produced ~35-45% less 5’-processed tRNA than wild type PRORP. Consistently, the accumulation of unprocessed polycistronic mitochondrial transcripts was observed in patient dermal fibroblasts, leading to an observable loss of steady-state levels of mitochondrial oxidative phosphorylation components. Expression of wild type KIAA0391 in patient fibroblasts rescued tRNA processing. Immunohistochemistry analyses of the auditory sensory epithelium from postnatal and adult mouse inner ear showed a high level of PRORP in the efferent synapses and nerve fibres of hair cells, indicating a possible mechanism for the sensorineural hearing loss observed in affected individuals. We have identified a variant in an additional gene associated with Perrault syndrome. With the identification of this disease-causing variant in KIAA0391, reduced function of each of the three subunits of mitochondrial RNase P have now been associated with distinct clinical presentations.Author SummaryPerrault syndrome is a rare genetic condition which results in hearing loss in both sexes and ovarian dysfunction in females. Perrault syndrome may also cause neurological symptoms in some patients. Here, we present the features and genetic basis of the condition in three sisters affected by Perrault syndrome. The sisters did not have pathogenic variants in any of the genes previously associated with Perrault syndrome. We identified a change in the gene KIAA0391, encoding PRORP, a subunit of the mitochondrial RNase P complex. Mitochondrial RNase P is a key enzyme in RNA processing in mitochondria. Impaired RNA processing reduces protein production in mitochondria, which we observed in patient cells along with high levels of unprocessed RNA. When we expressed wild type PRORP in patient cells, the RNA processing improved. We also investigated PRORP localisation in the mouse inner ear and found high levels in the synapses and nerve fibers that transmit sound. It may be that disruption of RNA processing in the mitochondria of these cells causes hearing loss in this family.


2021 ◽  
Author(s):  
M. Sergides ◽  
L. Perego ◽  
T. Galgani ◽  
C. Arbore ◽  
F.S. Pavone ◽  
...  

AbstractCells sense mechanical signals and forces to probe the external environment and adapt to tissue morphogenesis, external mechanical stresses, and a wide range of diverse mechanical cues. Here, we propose a combination of optical tools to manipulate single cells and measure the propagation of mechanical and biochemical signals inside them. Optical tweezers are used to trap microbeads that are used as handles to manipulate the cell plasma membrane; genetically encoded FRET-based force sensors inserted in F-actin and alpha-actinin are used to measure the propagation of mechanical signals to the cell cytoskeleton; while fluorescence microscopy with single molecule sensitivity can be used with a huge array of biochemical and genetic sensors. We describe the details of the setup implementation, the calibration of the basic components and preliminary characterization of actin and alpha-actinin FRET-based force sensors.


2021 ◽  
Vol 15 ◽  
Author(s):  
Athanasia Warnecke ◽  
Jennifer Harre ◽  
Matthew Shew ◽  
Adam J. Mellott ◽  
Igor Majewski ◽  
...  

Mesenchymal stromal cells (MSCs) are an adult derived stem cell-like population that has been shown to mediate repair in a wide range of degenerative disorders. The protective effects of MSCs are mainly mediated by the release of growth factors and cytokines thereby modulating the diseased environment and the immune system. Within the inner ear, MSCs have been shown protective against tissue damage induced by sound and a variety of ototoxins. To better understand the mechanism of action of MSCs in the inner ear, mice were exposed to narrow band noise. After exposure, MSCs derived from human umbilical cord Wharton’s jelly were injected into the perilymph. Controls consisted of mice exposed to sound trauma only. Forty-eight hours post-cell delivery, total RNA was extracted from the cochlea and RNAseq performed to evaluate the gene expression induced by the cell therapy. Changes in gene expression were grouped together based on gene ontology classification. A separate cohort of animals was treated in a similar fashion and allowed to survive for 2 weeks post-cell therapy and hearing outcomes determined. Treatment with MSCs after severe sound trauma induced a moderate hearing protective effect. MSC treatment resulted in an up-regulation of genes related to immune modulation, hypoxia response, mitochondrial function and regulation of apoptosis. There was a down-regulation of genes related to synaptic remodeling, calcium homeostasis and the extracellular matrix. Application of MSCs may provide a novel approach to treating sound trauma induced hearing loss and may aid in the identification of novel strategies to protect hearing.


2021 ◽  
Vol 12 ◽  
Author(s):  
Seishiro Sawamura ◽  
Genki Ogata ◽  
Kai Asai ◽  
Olga Razvina ◽  
Takeru Ota ◽  
...  

Hearing loss affects >5% of the global population and therefore, has a great social and clinical impact. Sensorineural hearing loss, which can be caused by different factors, such as acoustic trauma, aging, and administration of certain classes of drugs, stems primarily from a dysfunction of the cochlea in the inner ear. Few therapeutic strategies against sensorineural hearing loss are available. To develop effective treatments for this disease, it is crucial to precisely determine the behavior of ototoxic and therapeutic agents in the microenvironment of the cochlea in live animals. Since the 1980s, a number of studies have addressed this issue by different methodologies. However, there is much less information on pharmacokinetics in the cochlea than that in other organs; the delay in ontological pharmacology is likely due to technical difficulties with accessing the cochlea, a tiny organ that is encased with a bony wall and has a fine and complicated internal structure. In this review, we not only summarize the observations and insights obtained in classic and recent studies on pharmacokinetics in the cochlea but also describe relevant analytical techniques, with their strengths, limitations, and prospects.


2021 ◽  
Vol 136 (3) ◽  
Author(s):  
M. Sergides ◽  
L. Perego ◽  
T. Galgani ◽  
C. Arbore ◽  
F. S. Pavone ◽  
...  

AbstractCells sense mechanical signals and forces to probe the external environment and adapt to tissue morphogenesis, external mechanical stresses and a wide range of diverse mechanical cues. Here, we propose a combination of optical tools to manipulate single cells and measure the propagation of mechanical and biochemical signals inside them. Optical tweezers are used to trap microbeads that are used as handles to manipulate the cell plasma membrane; genetically encoded FRET-based force sensors inserted in F-actin and alpha-actinin are used to measure the propagation of mechanical signals to the cell cytoskeleton, while fluorescence microscopy with single-molecule sensitivity can be used with a huge array of biochemical and genetic sensors. We describe the details of the setup implementation, the calibration of the basic components and preliminary characterization of actin and alpha-actinin FRET-based force sensors.


2012 ◽  
Vol 9 (3) ◽  
pp. 231-242 ◽  
Author(s):  
Teresa Rivera ◽  
Lorena Sanz ◽  
Guadalupe Camarero ◽  
Isabel Varela-Nieto

2019 ◽  
Vol 19 (12) ◽  
pp. 1438-1453 ◽  
Author(s):  
Rafat M. Mohareb ◽  
Amr S. Abouzied ◽  
Nermeen S. Abbas

Background: Dimedone and thiazole moieties are privileged scaffolds (acting as primary pharmacophores) in many compounds that are useful to treat several diseases, mainly tropical infectious diseases. Thiazole derivatives are a very important class of compounds due to their wide range of pharmaceutical and therapeutic activities. On the other hand, dimedone is used to synthesize many therapeutically active compounds. Therefore, the combination of both moieties through a single molecule to produce heterocyclic compounds will produce excellent anticancer agents. Objective: The present work reports the synthesis of 47 new substances belonging to two classes of compounds: Dimedone and thiazoles, with the purpose of developing new drugs that present high specificity for tumor cells and low toxicity to the organism. To achieve this goal, our strategy was to synthesize a series of 4,5,6,7-tetrahydrobenzo[d]-thiazol-2-yl derivatives using the reaction of the 2-bromodimedone with cyanothioacetamide. Methods: The reaction of 2-bromodimedone with cyanothioacetamide gave the 4,5,6,7-tetrahydrobenzo[d]- thiazol-2-yl derivative 4. The reactivity of compound 4 towards some chemical reagents was observed to produce different heterocyclic derivatives. Results: A cytotoxic screening was performed to evaluate the performance of the new derivatives in six tumor cell lines. Thirteen compounds were shown to be promising toward the tumor cell lines which were further evaluated toward five tyrosine kinases. Conclusion: The results of antitumor screening showed that many of the tested compounds were of high inhibition towards the tested cell lines. Compounds 6c, 8c, 11b, 11d, 13b, 14b, 15c, 15g, 21b, 21c, 20d and 21d were the most potent compounds toward c-Met kinase and PC-3 cell line. The most promising compounds 6c, 8c, 11b, 11d, 13b, 14b, 15c, 15g, 20c, 20d, 21b, 21c and 21d were further investigated against tyrosine kinase (c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR). Compounds 6c, 11b, 11d, 14b, 15c, and 20d were selected to examine their Pim-1 kinase inhibition activity the results revealed that compounds 11b, 11d and 15c had high activities.


Sign in / Sign up

Export Citation Format

Share Document