scholarly journals Supercoiling DNA optically

2019 ◽  
Author(s):  
Graeme A. King ◽  
Federica Burla ◽  
Erwin J. G. Peterman ◽  
Gijs J.L. Wuite

AbstractCellular DNA is regularly subject to torsional stress during genomic processes, such as transcription and replication, resulting in a range of supercoiled DNA structures.1,2,3 For this reason, methods to prepare and study supercoiled DNA at the single-molecule level are widely used, including magnetic,4,5,6 angular-optical,7,8,9 micro-pipette,10 and magneto-optical tweezers.11 However, in order to address many open questions, there is a growing need for new techniques that can combine rapid torque control with both spatial manipulation and fluorescence microscopy. Here we present a single-molecule assay that can rapidly and controllably generate negatively supercoiled DNA using a standard dual-trap optical tweezers instrument. Supercoiled DNA formed in this way is amenable to fast buffer exchange, and can be interrogated with both force spectroscopy and fluorescence imaging of the whole DNA. We establish this method as a powerful platform to study both the biophysical properties and biological interactions of negatively supercoiled DNA.

2019 ◽  
Vol 116 (52) ◽  
pp. 26534-26539
Author(s):  
Graeme A. King ◽  
Federica Burla ◽  
Erwin J. G. Peterman ◽  
Gijs J. L. Wuite

Cellular DNA is regularly subject to torsional stress during genomic processes, such as transcription and replication, resulting in a range of supercoiled DNA structures. For this reason, methods to prepare and study supercoiled DNA at the single-molecule level are widely used, including magnetic, angular-optical, micropipette, and magneto-optical tweezers. However, it is currently challenging to combine DNA supercoiling control with spatial manipulation and fluorescence microscopy. This limits the ability to study complex and dynamic interactions of supercoiled DNA. Here we present a single-molecule assay that can rapidly and controllably generate negatively supercoiled DNA using a standard dual-trap optical tweezers instrument. This method, termed Optical DNA Supercoiling (ODS), uniquely combines the ability to study supercoiled DNA using force spectroscopy, fluorescence imaging of the whole DNA, and rapid buffer exchange. The technique can be used to generate a wide range of supercoiled states, with between <5 and 70% lower helical twist than nonsupercoiled DNA. Highlighting the versatility of ODS, we reveal previously unobserved effects of ionic strength and sequence on the structural state of underwound DNA. Next, we demonstrate that ODS can be used to directly visualize and quantify protein dynamics on supercoiled DNA. We show that the diffusion of the mitochondrial transcription factor TFAM can be significantly hindered by local regions of underwound DNA. This finding suggests a mechanism by which supercoiling could regulate mitochondrial transcription in vivo. Taken together, we propose that ODS represents a powerful method to study both the biophysical properties and biological interactions of negatively supercoiled DNA.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Tulika Das ◽  
Surasree Pal ◽  
Agneyo Ganguly

Abstract RecQ helicases are a highly conserved class of DNA helicases that play crucial role in almost all DNA metabolic processes including replication, repair and recombination. They are able to unwind a wide variety of complex intermediate DNA structures that may result from cellular DNA transactions and hence assist in maintaining genome integrity. Interestingly, a huge number of recent reports suggest that many of the RecQ family helicases are directly or indirectly involved in regulating transcription and gene expression. On one hand, they can remove complex structures like R-loops, G-quadruplexes or RNA:DNA hybrids formed at the intersection of transcription and replication. On the other hand, emerging evidence suggests that they can also regulate transcription by directly interacting with RNA polymerase or recruiting other protein factors that may regulate transcription. This review summarizes the up to date knowledge on the involvement of three human RecQ family proteins BLM, WRN and RECQL5 in transcription regulation and management of transcription associated stress.


Physiology ◽  
2002 ◽  
Vol 17 (5) ◽  
pp. 213-218 ◽  
Author(s):  
Caspar Rüegg ◽  
Claudia Veigel ◽  
Justin E. Molloy ◽  
Stephan Schmitz ◽  
John C. Sparrow ◽  
...  

Muscle myosin II is an ATP-driven, actin-based molecular motor. Recent developments in optical tweezers technology have made it possible to study movement and force production on the single-molecule level and to find out how different myosin isoforms may have adapted to their specific physiological roles.


2020 ◽  
Author(s):  
Keith J Mickolajczyk ◽  
Patrick M M Shelton ◽  
Michael Grasso ◽  
Xiaocong Cao ◽  
Sara R Warrington ◽  
...  

The superfamily-1 helicase non-structural protein 13 (nsp13) is required for SARS-CoV-2 replication, making it an important antiviral therapeutic target. The mechanism and regulation of nsp13 has not been explored at the single-molecule level. Specifically, force-dependent unwinding experiments have yet to be performed for any coronavirus helicase. Here, using optical tweezers, we find that nsp13 unwinding frequency, processivity, and velocity increase substantially when a destabilizing force is applied to the dsRNA, suggesting a passive unwinding mechanism. These results, along with bulk assays, depict nsp13 as an intrinsically weak helicase that can be potently activated by picoNewton forces. Such force-dependent behavior contrasts the known behavior of other viral monomeric helicases, drawing stronger parallels to ring-shaped helicases. Our findings suggest that mechanoregulation, which may be provided by a directly bound RNA-dependent RNA polymerase, enables on-demand helicase activity on the relevant polynucleotide substrate during viral replication.


2020 ◽  
Vol 21 (11) ◽  
pp. 4142
Author(s):  
Aleksandra Kaczorowska ◽  
Weronika Lamperska ◽  
Kaja Frączkowska ◽  
Jan Masajada ◽  
Sławomir Drobczyński ◽  
...  

In our study, we describe the outcomes of the intercalation of different anthracycline antibiotics in double-stranded DNA at the nanoscale and single molecule level. Atomic force microscopy analysis revealed that intercalation results in significant elongation and thinning of dsDNA molecules. Additionally, using optical tweezers, we have shown that intercalation decreases the stiffness of DNA molecules, that results in greater susceptibility of dsDNA to break. Using DNA molecules with different GC/AT ratios, we checked whether anthracycline antibiotics show preference for GC-rich or AT-rich DNA fragments. We found that elongation, decrease in height and decrease in stiffness of dsDNA molecules was highest in GC-rich dsDNA, suggesting the preference of anthracycline antibiotics for GC pairs and GC-rich regions of DNA. This is important because such regions of genomes are enriched in DNA regulatory elements. By using three different anthracycline antibiotics, namely doxorubicin (DOX), epirubicin (EPI) and daunorubicin (DAU), we could compare their detrimental effects on DNA. Despite their analogical structure, anthracyclines differ in their effects on DNA molecules and GC-rich region preference. DOX had the strongest overall effect on the DNA topology, causing the largest elongation and decrease in height. On the other hand, EPI has the lowest preference for GC-rich dsDNA. Moreover, we demonstrated that the nanoscale perturbations in dsDNA topology are reflected by changes in the microscale properties of the cell, as even short exposition to doxorubicin resulted in an increase in nuclei stiffness, which can be due to aberration of the chromatin organization, upon intercalation of doxorubicin molecules.


2012 ◽  
Vol 26 (13) ◽  
pp. 1230006 ◽  
Author(s):  
WEI-HUNG CHEN ◽  
JONATHAN D. WILSON ◽  
SITHARA S. WIJERATNE ◽  
SARAH A. SOUTHMAYD ◽  
KUAN-JIUH LIN ◽  
...  

Recent advances in nanoscale manipulation and piconewton force detection provide a unique tool for studying the mechanical and thermodynamic properties of biological molecules and complexes at the single-molecule level. Detailed equilibrium and dynamics information on proteins and DNA have been revealed by single-molecule manipulation and force detection techniques. The atomic force microscope (AFM) and optical tweezers have been widely used to quantify the intra- and inter-molecular interactions of many complex biomolecular systems. In this article, we describe the background, analysis, and applications of these novel techniques. Experimental procedures that can serve as a guide for setting up a single-molecule manipulation system using the AFM are also presented.


2017 ◽  
Author(s):  
Carel Fijen ◽  
Mattia Fontana ◽  
Serge G. Lemay ◽  
Klaus Mathwig ◽  
Johannes Hohlbein

ABSTRACTSingle-molecule detection schemes offer powerful means to overcome static and dynamic heterogeneity inherent to complex samples. Probing chemical and biological interactions and reactions with high throughput and time resolution, however, remains challenging and often requires surface-immobilized entities. Here, utilizing camera-based fluorescence microscopy, we present glass-made nanofluidic devices in which fluorescently labelled molecules flow through nanochannels that confine their diffusional movement. The first design features an array of parallel nanochannels for high-throughput analysis of molecular species under equilibrium conditions allowing us to record 200.000 individual localization events in just 10 minutes. Using these localizations for single particle tracking, we were able to obtain accurate flow profiles including flow speeds and diffusion coefficients inside the channels.A second design featuring a T-shaped nanochannel enables precise mixing of two different species as well as the continuous observation of chemical reactions. We utilized the design to visualize enzymatically driven DNA synthesis in real time and at the single-molecule level. Based on our results, we are convinced that the versatility and performance of the nanofluidic devices will enable numerous applications in the life sciences.


2010 ◽  
Vol 98 (3) ◽  
pp. 561a
Author(s):  
Attila Nagy ◽  
Yasuharu Takagi ◽  
Earl E. Homsher ◽  
Davin K.T. Hong ◽  
Mihaly Kovacs ◽  
...  

2017 ◽  
Vol 114 (5) ◽  
pp. 1015-1020 ◽  
Author(s):  
Marco Grison ◽  
Ulrich Merkel ◽  
Julius Kostan ◽  
Kristina Djinović-Carugo ◽  
Matthias Rief

Stable anchoring of titin within the muscle Z-disk is essential for preserving muscle integrity during passive stretching. One of the main candidates for anchoring titin in the Z-disk is the actin cross-linker α-actinin. The calmodulin-like domain of α-actinin binds to the Z-repeats of titin. However, the mechanical and kinetic properties of this important interaction are still unknown. Here, we use a dual-beam optical tweezers assay to study the mechanics of this interaction at the single-molecule level. A single interaction of α-actinin and titin turns out to be surprisingly weak if force is applied. Depending on the direction of force application, the unbinding forces can more than triple. Our results suggest a model where multiple α-actinin/Z-repeat interactions cooperate to ensure long-term stable titin anchoring while allowing the individual components to exchange dynamically.


Sign in / Sign up

Export Citation Format

Share Document