scholarly journals HYPERsol: flash-frozen results from archival FFPE tissue for clinical proteomics

2019 ◽  
Author(s):  
Dylan M. Marchione ◽  
Ilyana Ilieva ◽  
Benjamin A. Garcia ◽  
Darryl J. Pappin ◽  
John P. Wilson ◽  
...  

Massive formalin-fixed, paraffin-embedded (FFPE) tissue archives exist worldwide, representing a potential gold mine for clinical proteomics research. However, current protocols for FFPE proteomics lack standardization, efficiency, reproducibility, and scalability. Here we present High-Yield Protein Extraction and Recovery by direct SOLubilization (HYPERsol), an optimized workflow using adaptive-focused acoustics (AFA) ultrasonication and S-Trap sample processing that enables proteome coverage and quantification from FFPE samples comparable to that achieved from flash-frozen tissue (average R = 0.936).

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Stephen A. Luebker ◽  
Scott A. Koepsell

Urea based protein extraction of formalin-fixed paraffin-embedded (FFPE) tissue provides the most efficient workflow for proteomics due to its compatibility with liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). This study optimizes the use of urea for proteomic analysis of clinical FFPE tissue. A series of protein extraction conditions manipulating temperature and buffer composition were compared to reduce carbamylation introduced by urea and increase protein detection. Each extraction was performed on a randomized pair of serial sections of homogenous FFPE tissue and analyzed with LC-ESI-MS/MS. Results were compared in terms of yield, missed cleavages, and peptide carbamylation. Lowering extraction temperature to 60°C decreased carbamylation at the cost of decreased protein detection and yield. Protein extraction for at least 20 minutes at 95°C followed by 60°C for 2 hours maximized total protein yield while maintaining protein detection and reducing carbamylation by 7.9%. When accounting for carbamylation during analysis, this modified extraction temperature provides equivalent peptide and protein detection relative to the commercially available Qproteome® FFPE Tissue Kit. No changes to buffer composition containing 7 M urea, 2 M thiourea, and 1 M ammonium bicarbonate resulted in improvements to control conditions. Optimized urea in-solution digestion provides an efficient workflow with maximized yields for proteomic analysis of clinically relevant FFPE tissue.


2015 ◽  
Author(s):  
Anna Francina Webster ◽  
Paul Zumbo ◽  
Jennifer Fostel ◽  
Jorge Gandara ◽  
Susan D Hester ◽  
...  

Formalin-fixed paraffin-embedded (FFPE) tissue samples represent a potentially invaluable resource for transcriptomic-based research into the molecular basis of disease. However, use of FFPE samples in gene expression studies has been limited by technical challenges resulting from degradation of nucleic acids. Here we evaluated gene expression profiles derived from fresh-frozen (FRO) and FFPE mouse liver tissues using two DNA microarray protocols and two whole transcriptome sequencing (RNA-seq) library preparation methodologies. The ribo-depletion protocol outperformed the other three methods by having the highest correlations of differentially expressed genes (DEGs) and best overlap of pathways between FRO and FFPE groups. We next tested the effect of sample time in formalin (18 hours or 3 weeks) on gene expression profiles. Hierarchical clustering of the datasets indicated that test article treatment, and not preservation method, was the main driver of gene expression profiles. Meta- and pathway analyses indicated that biological responses were generally consistent for 18-hour and 3-week FFPE samples compared to FRO samples. However, clear erosion of signal intensity with time in formalin was evident, and DEG numbers differed by platform and preservation method. Lastly, we investigated the effect of age in FFPE block on genomic profiles. RNA-seq analysis of 8-, 19-, and 26-year-old control blocks using the ribo-depletion protocol resulted in comparable quality metrics, including expected distributions of mapped reads to exonic, UTR, intronic, and ribosomal fractions of the transcriptome. Overall, our results suggest that FFPE samples are appropriate for use in genomic studies in which frozen samples are not available, and that ribo-depletion RNA-seq is the preferred method for this type of analysis in archival and long-aged FFPE samples.


2020 ◽  
Vol 6 (4) ◽  
pp. 319
Author(s):  
Dunja Wilmes ◽  
Ilka McCormick-Smith ◽  
Charlotte Lempp ◽  
Ursula Mayer ◽  
Arik Bernard Schulze ◽  
...  

Lack of sensitive diagnostic tests impairs the understanding of the epidemiology of histoplasmosis, a disease whose burden is estimated to be largely underrated. Broad-range PCRs have been applied to identify fungal agents from pathology blocks, but sensitivity is variable. In this study, we compared the results of a specific Histoplasma qPCR (H. qPCR) with the results of a broad-range qPCR (28S qPCR) on formalin-fixed, paraffin-embedded (FFPE) tissue specimens from patients with proven fungal infections (n = 67), histologically suggestive of histoplasmosis (n = 36) and other mycoses (n = 31). The clinical sensitivity for histoplasmosis of the H. qPCR and the 28S qPCR was 94% and 48.5%, respectively. Samples suggestive for other fungal infections were negative with the H. qPCR. The 28S qPCR did not amplify DNA of Histoplasma in FFPE in these samples, but could amplify DNA of Emergomyces (n = 1) and Paracoccidioides (n = 2) in three samples suggestive for histoplasmosis but negative in the H. qPCR. In conclusion, amplification of Histoplasma DNA from FFPE samples is more sensitive with the H. qPCR than with the 28S qPCR. However, the 28S qPCR identified DNA of other fungi in H. qPCR-negative samples presenting like histoplasmosis, suggesting that the combination of both assays may improve the diagnosis.


2009 ◽  
Vol 57 (9) ◽  
pp. 849-860 ◽  
Author(s):  
Marshall S. Scicchitano ◽  
Deidre A. Dalmas ◽  
Rogely W. Boyce ◽  
Heath C. Thomas ◽  
Kendall S. Frazier

Global mass spectrometry (MS) profiling and spectral count quantitation are used to identify unique or differentially expressed proteins and can help identify potential biomarkers. MS has rarely been conducted in retrospective studies, because historically, available samples for protein analyses were limited to formalin-fixed, paraffin-embedded (FFPE) archived tissue specimens. Reliable methods for obtaining proteomic profiles from FFPE samples are needed. Proteomic analysis of these samples has been confounded by formalin-induced protein cross-linking. The performance of extracted proteins in a liquid chromatography tandem MS format from FFPE samples and extracts from whole and laser capture microdissected (LCM) FFPE and frozen/optimal cutting temperature (OCT)- embedded matched control rat liver samples were compared. Extracts from FFPE and frozen/OCT-embedded livers from atorvastatin-treated rats were further compared to assess the performance of FFPE samples in identifying atorvastatin-regulated proteins. Comparable molecular mass representation was found in extracts from FFPE and OCT-frozen tissue sections, whereas protein yields were slightly less for the FFPE sample. The numbers of shared proteins identified indicated that robust proteomic representation from FFPE tissue and LCM did not negatively affect the number of identified proteins from either OCT-frozen or FFPE samples. Subcellular representation in FFPE samples was similar to OCT-frozen, with predominantly cytoplasmic proteins identified. Biologically relevant protein changes were detected in atorvastatin-treated FFPE liver samples, and selected atorvastatin-related proteins identified by MS were confirmed by Western blot analysis. These findings demonstrate that formalin fixation, paraffin processing, and LCM do not negatively impact protein quality and quantity as determined by MS and that FFPE samples are amenable to global proteomic analysis.


Author(s):  
Robin Verjans ◽  
Annette H. Bruggink ◽  
Robby Kibbelaar ◽  
Jos Bart ◽  
Aletta Debernardi ◽  
...  

AbstractBiobanks play a crucial role in enabling biomedical research by facilitating scientific use of valuable human biomaterials. The PALGA foundation—a nationwide network and registry of histo- and cytopathology in the Netherlands—was established to promote the provision of data within and between pathology departments, and to make the resulting knowledge available for healthcare. Apart from the pathology data, we aimed to utilize PALGA’s nationwide network to find and access the rich wealth of Formalin-Fixed Paraffin-Embedded (FFPE) tissue samples for scientific use.  We implemented the Dutch National TissueArchive Portal (DNTP) to utilize PALGA’s nationwide network for requesting FFPE tissue samples. The DNTP consists of (1) a centrally organized internet portal to improve the assessing, processing, harmonization, and monitoring of the procurement process, while (2) dedicated HUB-employees provide practical support at peripheral pathology departments. Since incorporation of the DNTP, both the number of filed requests for FFPE tissue samples and the amount of HUB-mediated support increased 55 and 29% respectively. In line, the sample procurement duration time decreased significantly (− 47%). These findings indicate that implementation of the DNTP improved the frequency, efficiency, and transparency of FFPE tissue sample procurement for research in the Netherlands. To conclude, the need for biological resources is growing persistently to enable precision medicine. Here, we access PALGA’s national, pathology network by implementation of the DNTP to allow for efficient, consistent, and transparent exchange of FFPE tissue samples for research across the Netherlands.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Michal Marczyk ◽  
Chunxiao Fu ◽  
Rosanna Lau ◽  
Lili Du ◽  
Alexander J. Trevarton ◽  
...  

Abstract Background Utilization of RNA sequencing methods to measure gene expression from archival formalin-fixed paraffin-embedded (FFPE) tumor samples in translational research and clinical trials requires reliable interpretation of the impact of pre-analytical variables on the data obtained, particularly the methods used to preserve samples and to purify RNA. Methods Matched tissue samples from 12 breast cancers were fresh frozen (FF) and preserved in RNAlater or fixed in formalin and processed as FFPE tissue. Total RNA was extracted and purified from FF samples using the Qiagen RNeasy kit, and in duplicate from FFPE tissue sections using three different kits (Norgen, Qiagen and Roche). All RNA samples underwent whole transcriptome RNA sequencing (wtRNAseq) and targeted RNA sequencing for 31 transcripts included in a signature of sensitivity to endocrine therapy. We assessed the effect of RNA extraction kit on the reliability of gene expression levels using linear mixed-effects model analysis, concordance correlation coefficient (CCC) and differential analysis. All protein-coding genes in the wtRNAseq and three gene expression signatures for breast cancer were assessed for concordance. Results Despite variable quality of the RNA extracted from FFPE samples by different kits, all had similar concordance of overall gene expression from wtRNAseq between matched FF and FFPE samples (median CCC 0.63–0.66) and between technical replicates (median expression difference 0.13–0.22). More than half of genes were differentially expressed between FF and FFPE, but with low fold change (median |LFC| 0.31–0.34). Two out of three breast cancer signatures studied were highly robust in all samples using any kit, whereas the third signature was similarly discordant irrespective of the kit used. The targeted RNAseq assay was concordant between FFPE and FF samples using any of the kits (CCC 0.91–0.96). Conclusions The selection of kit to purify RNA from FFPE did not influence the overall quality of results from wtRNAseq, thus variable reproducibility of gene signatures probably relates to the reliability of individual gene selected and possibly to the algorithm. Targeted RNAseq showed promising performance for clinical deployment of quantitative assays in breast cancer from FFPE samples, although numerical scores were not identical to those from wtRNAseq and would require calibration.


2016 ◽  
Vol 54 (11) ◽  
pp. 2798-2803 ◽  
Author(s):  
Elham Salehi ◽  
Mohammad T. Hedayati ◽  
Jan Zoll ◽  
Haleh Rafati ◽  
Maryam Ghasemi ◽  
...  

In a retrospective multicenter study, 102 formalin-fixed paraffin-embedded (FFPE) tissue specimens with histopathology results were tested. Two 4- to 5-μm FFPE tissue sections from each specimen were digested with proteinase K, followed by automated nucleic acid extraction. Multiple real-time quantitative PCR (qPCR) assays targeting the internal transcribed spacer 2 (ITS2) region of ribosomal DNA, using fluorescently labeled primers, was performed to identify clinically important genera and species of Aspergillus , Fusarium , Scedosporium , and the Mucormycetes . The molecular identification was correlated with results from histological examination. One of the main findings of our study was the high sensitivity of the automated DNA extraction method, which was estimated to be 94%. The qPCR procedure that was evaluated identified a range of fungal genera/species, including Aspergillus fumigatus , Aspergillus flavus , Aspergillus terreus , Aspergillus niger , Fusarium oxysporum , Fusarium solani , Scedosporium apiospermum , Rhizopus oryzae , Rhizopus microsporus , Mucor spp., and Syncephalastrum . Fusarium oxysporum and F. solani DNA was amplified from five specimens from patients initially diagnosed by histopathology as having aspergillosis. Aspergillus flavus , S. apiospermum , and Syncephalastrum were detected from histopathological mucormycosis samples. In addition, examination of four samples from patients suspected of having concomitant aspergillosis and mucormycosis infections resulted in the identification of two A. flavus isolates, one Mucor isolate, and only one sample having both R. oryzae and A. flavus . Our results indicate that histopathological features of molds may be easily confused in tissue sections. The qPCR assay used in this study is a reliable tool for the rapid and accurate identification of fungal pathogens to the genus and species levels directly from FFPE tissues.


Author(s):  
Miriam Potrony ◽  
Celia Badenas ◽  
Bénédicte Naerhuyzen ◽  
Paula Aguilera ◽  
Joan Anton Puig-Butille ◽  
...  

AbstractBackground:Methods:DNA was obtained from 144 FFPE samples (62 primary melanoma, 43 sentinel lymph nodes [SLN] and 39 metastasis).Results:Complete sequencing results were obtained from 75% (108/144) of the samples, and at least one gene was sequenced in 89% (128/144) of them.Conclusions:Preserving sufficient tumor area in FFPE blocks is important. It is necessary to keep the FFPE blocks, no matter their age, as they are necessary to decide the best treatment for the melanoma patient.


2014 ◽  
Vol 8 (9-10) ◽  
pp. 735-736 ◽  
Author(s):  
Valérie Broeckx ◽  
Lise Peeters ◽  
Evelyne Maes ◽  
Lentel Pringels ◽  
Eddy-Tim Verjans ◽  
...  

2018 ◽  
Vol 143 (3) ◽  
pp. 356-361
Author(s):  
Ming Guo ◽  
Abha Khanna ◽  
Jianping Wang ◽  
Michelle D. Williams ◽  
Neda Kalhor ◽  
...  

Context.— Human papillomavirus (HPV) DNA in situ hybridization (ISH) assay and p16 immunohistochemistry (IHC) are used to determine high-risk HPV status in formalin-fixed, paraffin-embedded (FFPE) tissues in oropharyngeal squamous cell carcinoma (SCC). Although high sensitivity and specificity for HPV can be obtained by combined p16 IHC and HPV DNA ISH, the occasional discrepancy between these assays has prompted evaluation of Cervista HPV assays in FFPE tissue from patients with oropharyngeal SCC. Objective.— To compare the efficacy of Cervista HPV 16/18 and Cervista HPV HR assay to that of HPV DNA ISH assay and p16 IHC in FFPE tissue in head and neck squamous cell carcinoma of oropharyngeal origin. Design.— Archived FFPE tissue from 84 patients with SCC of oropharyngeal origin and available HPV DNA ISH and p16 IHC test results were tested with the Cervista HPV 16/18 assay and further verified by polymerase chain reaction (PCR)–based HPV16/18 genotyping tests in cases with discrepancy. Results.— Of the 84 specimens, 75% (63 of 84) were positive and 16% (13 of 84) had discrepant or equivocal findings by p16 IHC and HPV DNA ISH testing. Use of Cervista HPV assays, either to clarify discrepant/equivocal findings or as confirmation after initial p16 IHC/HPV DNA ISH tests, identified 81% (68 of 84) of HPV-positive cases without equivocal HPV results. Five of 13 cases with discrepancy or equivocal HPV DNA ISH results tested positive for HPV16 or HPV18 by Cervista HPV 16/18 assay, which was further confirmed by PCR-based HPV 16/18 genotyping. Conclusions.— The Cervista HPV assays are a reasonable alternative to HPV DNA ISH in determining HPV status in FFPE tissue specimens from patients with oropharyngeal SCC.


Sign in / Sign up

Export Citation Format

Share Document