scholarly journals STEM-29. THE HISTONE VARIANT macroH2A2 ORCHESTRATES AN ACTIONABLE CHROMATIN PROGRAM OF STEMNESS IN GLIOBLASTOMA

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii202-ii202
Author(s):  
Ana Nikolic ◽  
Anna Bobyn ◽  
Katrina Ellestad ◽  
Xueqing Lun ◽  
Michael Johnston ◽  
...  

Abstract Glioblastoma cells with the crucial stemness property of self-renewal constitute therapy-resistant reservoirs that seed tumor relapse. Effective targeting of these cells in clinical settings has been hampered by their relative quiescence, which invalidates the cell replication bias of most current treatments. Furthermore, although their dependence on specific chromatin and transcriptional states for the maintenance of stemness programs has been proposed as a vulnerability, these nuclear programs have been challenging to target pharmaceutically. Therefore the identification of targetable chromatin paradigms regulating self-renewal would represent a significant advancement for this incurable malignancy. Here we report a new role for the histone variant macroH2A2 in modulating a targetable epigenetic network of stemness in glioblastoma. By integrating transcriptomic, bulk and single-cell epigenomic datasets we generated from patient-derived models and surgical specimens, we show that macroH2A2 represses a transcriptional network of stemness through direct regulation of chromatin accessibility at enhancer elements. Functional assays in vitro and in vivo further showcase that macroH2A2 antagonizes self-renewal and stemness in glioblastoma preclinical models. In agreement with our experimental findings, high expression of macroH2A2 is a positive prognostic factor in clinical glioblastoma cohorts. Reasoning that increasing macroH2A2 levels could be an effective strategy to repress stemness programs and ameliorate patient outcome, we embarked on a screen to identify compounds that could elevate macroH2A2 levels. We report that an inhibitor of the chromatin remodeler Menin increases macroH2A2 levels, which in turn repress self-renewal. Additionally, we provide evidence that Menin inhibition induces viral mimicry programs and the demise of glioblastoma cells. Menin inhibition is being tested in clinical trials for blood malignancies (NCT04067336). Our preclinical work therefore reveals a novel and central role for macroH2A2 in an epigenetic network of stemness and suggests new clinical approaches for glioblastoma.

2020 ◽  
Author(s):  
Fatemeh Safi ◽  
Parashar Dhapola ◽  
Sarah Warsi ◽  
Eva Erlandsson ◽  
Ewa Sitnicka ◽  
...  

SUMMARYThe emerging notion of hematopoietic stem- and progenitor cells (HSPCs) as a low-primed cloud without sharply demarcated gene expression programs raises the question on how cellular fate options emerge, and at which stem-like stage lineage priming is initiated. Here we investigated single-cell chromatin accessibility of Lineage−, cKit+, Sca1+ (LSK) HSPCs spanning the early differentiation landscape. Application of a signal-processing algorithm to detect transition points corresponding to massive alterations in accessibility of 571 transcription factor-motifs revealed a population of LSK FMS-like tyrosine kinase 3(Flt3)intCD9high cells that concurrently display stem-like and lineage-affiliated chromatin signatures pointing to a simultaneous gain of both Lympho-Myeloid and Megakaryocyte-Erythroid programs. Molecularly and functionally, these cells position between stem cells and committed progenitors, display multi-lineage capacity in vitro and in vivo, but lack self-renewal activity. This integrative molecular analysis resolves the heterogeneity of cells along hematopoietic differentiation and permits investigation of chromatin-mediated transition between multipotency and lineage restriction.


2021 ◽  
Author(s):  
Ana Nikolic ◽  
Anna Bobyn ◽  
Francesca Maule ◽  
Katrina Ellestad ◽  
Xueqing Lun ◽  
...  

Self-renewal is a crucial property of glioblastoma cells and is enabled by the choreographed function of chromatin regulators and transcription factors. Identifying targetable epigenetic mechanisms of self-renewal could represent an important step toward developing new and effective treatments for this universally lethal cancer. Here we uncover a targetable epigenetic axis of self-renewal mediated by the histone variant macroH2A2. Using patient-derived in vitro and in vivo models, we show that macroH2A2 has a direct role in shaping chromatin accessibility at enhancer elements to antagonize transcriptional programs of self-renewal. Pharmaceutical inhibition of the chromatin remodeler Menin increased macroH2A2 levels and repressed self-renewal. Our results reveal a targetable epigenetic mechanism of self-renewal controlled by macroH2A2 and suggest new treatment approaches for glioblastoma patients.


2020 ◽  
Author(s):  
Fangxian Liu ◽  
Qijin Pan ◽  
Liangliang Wang ◽  
Shijiang Yi ◽  
Peng Liu ◽  
...  

Abstract Background: Calycosin is a naturally-occurring phytoestrogen that reportedly exerts anti- nasopharyngeal carcinoma (NPC) effects. Nevertheless, the molecular mechanisms for anti-NPC using calycosin remain unrevealed. Methods: Thus, a network pharmacology was used to uncover anti-NPC pharmacological targets and mechanisms of calycosin. Additionally, validated experiments were conducted to validate the bioinformatic findings of calycosin for treating NPC. Results: As results, bioinformatic assays showed that the predictive pharmacological targets of calycosin against NPC were TP53, MAPK14, CASP8, MAPK3, CASP3, RIPK1, JUN, ESR1, respectively. And the top 20 biological processes and pharmacological mechanisms of calycosin against NPC were identified accordingly. In clinical data, NPC samples showed positive expression of MAPK14, reduced TP53, CASP8 expressions. In studies in vitro and in vivo, calycosin-dosed NPC cells resulted in reduced cell proliferation, promoted cell apoptosis. In TUNEL staining, calycosin exhibited elevated apoptotic cell number. And immunostaining assays resulted in increased TP53, CASP8 positive cells, and reduced MAPK14 expressions in calycosin-dosed NPC cells and tumor-bearing nude mice. Conclusion: Altogether, these bioinformatic findings reveal optimal pharmacological targets and mechanisms of calycosin against NPC, following with representative identification of human and preclinical experiments. Notably, some of original biotargets may be potentially used to treat NPC.


2021 ◽  
Author(s):  
Xuyang Lv ◽  
Jiangchuan Sun ◽  
Linfeng Hu ◽  
Ying Qian ◽  
Chunlei Fan ◽  
...  

Abstract Background: Although curcumol has been shown to possess antitumor effects in several cancers, its effects on glioma are largely unknown. Recently, lncRNAs have been reported to play an oncogenic role through epigenetic modifications. Therefore, here, we investigated whether curcumol inhibited glioma progression by reducing FOXD2-AS1-mediated enhancer of zeste homolog 2 (EZH2) activation.Methods: MTT, colony formation, flow cytometry, Transwell, and neurosphere formation assays were used to assess cell proliferation, cell cycle, apoptosis, the percentage of CD133+ cells, the migration and invasion abilities, and the self-renewal ability. qRT-PCR, western blotting, immunofluorescence, and immunohistochemical staining were used to detect mRNA and protein levels. Isobologram analysis and methylation-specific PCR were used to analyze the effects of curcumol on TMZ resistance in glioma cells. DNA pull-down and Chip assays were employed to explore the molecular mechanism underlying the functions of curcumol in glioma cells. Tumorigenicity was determined using a xenograft formation assay. Results: Curcumol inhibited the proliferation, metastasis, self-renewal ability, and TMZ resistance of glioma cells in vitro and in vivo. FOXD2-AS1 was highly expressed in glioma cell lines, and its expression was suppressed by curcumol treatment in a dose- and time-dependent manner. The forced expression of FOXD2-AS1 abrogated the effect of curcumol on glioma cell proliferation, metastasis, self-renewal ability, and TMZ resistance. Moreover, the forced expression of FOXD2-AS1 reversed the inhibitory effect of curcumol on EZH2 activation.Conclusions: We showed for the first time that curcumol is effective in inhibiting malignant biological behaviors and TMZ-resistance of glioma cells by suppressing FOXD2-AS1-mediated EZH2 activation on anti-oncogenes. Our findings offer the possibility of exploiting curcumol as a promising therapeutic agent for glioma treatment and may provide an option for the clinical application of this natural herbal medicine.


2020 ◽  
Author(s):  
Tristan Lerbs ◽  
Lu Cui ◽  
Megan E. King ◽  
Tim Chai ◽  
Claire Muscat ◽  
...  

AbstractScleroderma is a devastating fibrotic autoimmune disease. Current treatments are partly effective in preventing disease progression, but do not remove fibrotic tissue. Here, we evaluated whether scleroderma fibroblasts take advantage of the “don’t-eat-me-signal” CD47 and whether blocking CD47 enables the body’s immune system to get rid of diseased fibroblasts. To test this approach, we used a Jun-inducible scleroderma model. We first demonstrated in patient samples that scleroderma upregulated JUN and increased promotor accessibilities of both JUN and the CD47. Next, we established our scleroderma model demonstrating that Jun mediated skin fibrosis through the hedgehog-dependent expansion of CD26+Sca1-fibroblasts in mice. In a niche-independent adaptive transfer model, JUN steered graft survival and conferred increased self-renewal to fibroblasts. In vivo, JUN enhanced the expression of CD47, and inhibiting CD47 eliminated an ectopic fibroblast graft and increased in vitro phagocytosis. In the syngeneic mouse, depleting macrophages ameliorated skin fibrosis. Therapeutically, combined CD47 and IL6 blockade reversed skin fibrosis in mice and led to the rapid elimination of ectopically transplanted scleroderma cells. Altogether, our study is the first to demonstrate the efficiency of combining different immunotherapies in treating scleroderma and provide a rationale for combining CD47 and IL6 inhibition in clinical trials.


Blood ◽  
2010 ◽  
Vol 115 (9) ◽  
pp. 1709-1717 ◽  
Author(s):  
Yan Sun ◽  
Lijian Shao ◽  
Hao Bai ◽  
Zack Z. Wang ◽  
Wen-Shu Wu

Abstract Both extrinsic and intrinsic mechanisms tightly govern hematopoietic stem cell (HSC) decisions of self-renewal and differentiation. However, transcription factors that can selectively regulate HSC self-renewal division after stress remain to be identified. Slug is an evolutionarily conserved zinc-finger transcription factor that is highly expressed in primitive hematopoietic cells and is critical for the radioprotection of these key cells. We studied the effect of Slug in the regulation of HSCs in Slug-deficient mice under normal and stress conditions using serial functional assays. Here, we show that Slug deficiency does not disturb hematopoiesis or alter HSC homeostasis and differentiation in bone marrow but increases the numbers of primitive hematopoietic cells in the extramedullary spleen site. Deletion of Slug enhances HSC repopulating potential but not its homing and differentiation ability. Furthermore, Slug deficiency increases HSC proliferation and repopulating potential in vivo after myelosuppression and accelerates HSC expansion during in vitro culture. Therefore, we propose that Slug is essential for controlling the transition of HSCs from relative quiescence under steady-state condition to rapid proliferation under stress conditions. Our data suggest that inhibition of Slug in HSCs may present a novel strategy for accelerating hematopoietic recovery, thus providing therapeutic benefits for patients after clinical myelosuppressive treatment.


2021 ◽  
Author(s):  
Florian Störtz ◽  
Jeffrey Mak ◽  
Peter Minary

CRISPR/Cas programmable nuclease systems have become ubiquitous in the field of gene editing. With progressing development, applications in in vivo therapeutic gene editing are increasingly within reach, yet limited by possible adverse side effects from unwanted edits. Recent years have thus seen continuous development of off-target prediction algorithms trained on in vitro cleavage assay data gained from immortalised cell lines. Here, we implement novel deep learning algorithms and feature encodings for off-target prediction and systematically sample the resulting model space in order to find optimal models and inform future modelling efforts. We lay emphasis on physically informed features, hence terming our approach piCRISPR, which we gain on the large, diverse crisprSQL off-target cleavage dataset. We find that our best-performing model highlights the importance of sequence context and chromatin accessibility for cleavage prediction and outperforms state-of-the-art prediction algorithms in terms of area under precision-recall curve.


Sign in / Sign up

Export Citation Format

Share Document