scholarly journals Manual stabilization reveals a transient role for balance control during locomotor adaptation

2019 ◽  
Author(s):  
Sungwoo Park ◽  
James M. Finley

AbstractA fundamental feature of human locomotor control is the need to adapt our walking pattern in response to changes in the environment. For example, when people walk on a split-belt treadmill which has belts that move at different speeds, they adapt to the asymmetric speed constraints by reducing their spatiotemporal asymmetry. Here, we aim to understand the role of stability as a potential factor driving this adaptation process. We recruited 24 healthy, young adults to adapt to walking on a split-belt treadmill while either holding on to a handrail or walking with free arm swing. We measured whole-body angular momentum and step length asymmetry as measures of dynamic balance and spatiotemporal asymmetry, respectively. To understand how changes in intersegmental coordination influenced measures of dynamic balance, we also measured segmental angular momenta and the coefficient of limb cancellation. When participants were initially exposed to the asymmetry in belt speeds, we observed an increase in whole-body angular momentum that was due to both an increase in the momentum of individual limb segments and a reduction in limb cancellation. Holding on to a handrail reduced the perturbation to asymmetry during the early phase of adaptation and resulted in a smaller after-effect during post-adaptation. In addition, the stabilization provided by holding on to a handrail led to reductions in the coupling between angular momentum and asymmetry. These results suggest that regulation of dynamic balance is most important during the initial, transient phase of adaptation to walking on a split-belt treadmill.Summary StatementRegulation of balance exhibits a transient effect on adaptation to imposed asymmetries during bipedal walking. External stabilization attenuates initial deviations in spatiotemporal asymmetry but has no effect on subsequent adaptation.

2021 ◽  
pp. 154596832110193
Author(s):  
Sungwoo Park ◽  
Chang Liu ◽  
Natalia Sánchez ◽  
Julie K. Tilson ◽  
Sara J. Mulroy ◽  
...  

Background People poststroke often walk with a spatiotemporally asymmetric gait, due in part to sensorimotor impairments in the paretic lower extremity. Although reducing asymmetry is a common objective of rehabilitation, the effects of improving symmetry on balance are yet to be determined. Objective We established the concurrent validity of whole-body angular momentum as a measure of balance, and we determined if reducing step length asymmetry would improve balance by decreasing whole-body angular momentum. Methods We performed clinical balance assessments and measured whole-body angular momentum during walking using a full-body marker set in a sample of 36 people with chronic stroke. We then used a biofeedback-based approach to modify step length asymmetry in a subset of 15 of these individuals who had marked asymmetry and we measured the resulting changes in whole-body angular momentum. Results When participants walked without biofeedback, whole-body angular momentum in the sagittal and frontal plane was negatively correlated with scores on the Berg Balance Scale and Functional Gait Assessment supporting the validity of whole-body angular momentum as an objective measure of dynamic balance. We also observed that when participants walked more symmetrically, their whole-body angular momentum in the sagittal plane increased rather than decreased. Conclusions Voluntary reductions of step length asymmetry in people poststroke resulted in reduced measures of dynamic balance. This is consistent with the idea that after stroke, individuals might have an implicit preference not to deviate from their natural asymmetry while walking because it could compromise their balance. Clinical Trials Number: NCT03916562.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jérémie Begue ◽  
Nicolas Peyrot ◽  
Angélique Lesport ◽  
Nicolas A. Turpin ◽  
Bruno Watier ◽  
...  

AbstractRecent evidence suggests that during volitional stepping older adults control whole-body angular momentum (H) less effectively than younger adults, which may impose a greater challenge for balance control during this task in the elderly. This study investigated the influence of aging on the segment angular momenta and their contributions to H during stepping. Eighteen old and 15 young healthy adults were instructed to perform a series of stepping at two speed conditions: preferred and as fast as possible. Full-body kinematics were recorded to compute angular momenta of the trunk, arms and legs and their contributions to total absolute H on the entire stepping movement. Results indicated that older adults exhibited larger angular momenta of the trunk and legs in the sagittal plane, which contributed to a higher sagittal plane H range during stepping compared to young adults. Results also revealed that older adults had a greater trunk contribution and lower leg contribution to total absolute H in the sagittal plane compared to young adults, even though there was no difference in the other two planes. These results stress that age-related changes in H control during stepping arise as a result of changes in trunk and leg rotational dynamics.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Nicole G. Harper ◽  
Jason M. Wilken ◽  
Richard R. Neptune

Abstract Dynamic balance is controlled by lower-limb muscles and is more difficult to maintain during stair ascent compared to level walking. As a result, individuals with lower-limb amputations often have difficulty ascending stairs and are more susceptible to falls. The purpose of this study was to identify the biomechanical mechanisms used by individuals with and without amputation to control dynamic balance during stair ascent. Three-dimensional muscle-actuated forward dynamics simulations of amputee and nonamputee stair ascent were developed and contributions of individual muscles, the passive prosthesis, and gravity to the time rate of change of angular momentum were determined. The prosthesis replicated the role of nonamputee plantarflexors in the sagittal plane by contributing to forward angular momentum. The prosthesis largely replicated the role of nonamputee plantarflexors in the transverse plane but resulted in a greater change of angular momentum. In the frontal plane, the prosthesis and nonamputee plantarflexors contributed oppositely during the first half of stance while during the second half of stance, the prosthesis contributed to a much smaller extent. This resulted in altered contributions from the intact leg plantarflexors, vastii and hamstrings, and the intact and residual leg hip abductors. Therefore, prosthetic devices with altered contributions to frontal-plane angular momentum could improve balance control during amputee stair ascent and minimize necessary muscle compensations. In addition, targeted training could improve the force production magnitude and timing of muscles that regulate angular momentum to improve balance control.


2019 ◽  
Vol 31 (5) ◽  
pp. 686-696
Author(s):  
Toyoyuki Honjo ◽  
◽  
Hidehisa Yoshida

Bipedal walking locomotion is one of the characteristics of human behavior. Both the lower body and the upper body (trunk) behaviors affect walking characteristics. To achieve a suitable gait, it is important to understand the effect of the trunk behavior. Therefore, in this paper, the effects of three types of trunk swinging behavior on planar bipedal gait in a model with an upper body – forward swinging, backward swinging, and no swinging – were evaluated using numerical simulations. To reduce control inputs and reflect the effect of upper body behavior, an underactuated bipedal walker without knee joints was adopted. This walker walked down a gentle slope using only hip actuation between the stance leg and the trunk. As a result, unique gait characteristics that depended on the direction of the trunk swinging behavior were found, including a longer step length and a lower-frequency gait with forward trunk swinging behavior and a shorter step length and higher-frequency gait with smaller angular momentum with backward trunk swinging behavior.


2016 ◽  
Vol 32 (6) ◽  
pp. 599-602
Author(s):  
Timothy D. Coleman ◽  
Haley J. Lawrence ◽  
W. Lee Childers

This research tested a reproducible uneven walkway designed to destabilize human gait. Ten participants walked 30 times over even and uneven (7.3 × .08 m, sequentially-placed wooden blocks in a rotating pattern, 1-cm thick rubber mat) walkways. A full-body marker set and 8-camera motion capture system recorded limb kinematics. MatLab 2013b was used to calculate measures of gait stability: angular momentum, margin of stability, step width variability, CoM height, toe clearance, lateral arm swing. The minimum number of strides necessary to minimize intraparticipant variability was calculated via the interquartile range/median ratio (IMR) at 25% and 10% thresholds for each measure. A paired t test tested for significance between terrains (P < .05). The uneven walkway significantly destabilized gait as seen by increases in: coronal and sagittal plane angular momentum, step width variability, and toe clearance. We found no significant difference with the margin of stability between the 2 terrains possibly due to compensatory strategies (eg, lateral arm swing, trunk sway, step width). Recording a minimum of 10 strides per subject will keep each variable between the 25% and 10% IMR thresholds. In conclusion, the uneven walkway design significantly destabilizes human gait and at least 10 strides should be collected per subject.


2012 ◽  
Vol 164 ◽  
pp. 383-386
Author(s):  
Hai Long Su ◽  
Da Wei Zhang

Walking is a complex dynamic task that requires the regulation of the whole-body angular momentum to maintain dynamic balance while performing walking subtasks such as propelling the body forward and accelerating the leg into swing. To investigate the characteristic of slips and falls during gait self-balancing, a method was proposed that could better understand the effects of pre-slip gait response biomechanics on the risk for falls. A new segmental model of the human body was developed and this model would be used continuously measured locations from nearly 85 points on the body to produce a dynamic postural record of human movement. The muscles surrounding the hip were found to be most important in maintaining control of the trunk and preventing collapse in response to the forward perturbations (FP).


2020 ◽  
Author(s):  
Gabriella H Small ◽  
Lydia G Brough ◽  
Richard Neptune

Abstract BackgroundFor an individual to walk, they must maintain control of their dynamic balance. However, situations that present an increased cognitive load may impair an individual’s ability to control their balance. While dual-task studies have analyzed walking-while-talking conditions, few studies have focused specifically on the influence of cognitive load on balance control. The purpose of this study was to assess how individuals prioritize their cognitive resources and control dynamic balance during dual-task conditions of varying difficulty. MethodsYoung healthy adults (n = 15) performed two single-task conditions (spelling while standing and walking with no cognitive load) and three dual-task conditions (walking with increasing cognitive load: attentive listening, spelling short words backwards and spelling long words backwards). Repeated measures analysis of variances were used to assess differences in balance outcome measures and cognitive performance. ResultsCognitive performance did not change between the single- and dual-task conditions as measured by percent error and response rate ( p = 0.3). Balance control, assessed as the range of whole-body angular momentum, did not change between the no load and listening conditions, but decreased during the short and long spelling conditions ( p < 0.001). ConclusionsThese results showed that balance control decreases during dual-task treadmill walking with increased cognitive loads, but that cognitive performance does not change. The decrease in balance control suggests that participants prioritized cognitive performance over balance control during these dual-task walking conditions. This work offers additional insight into the automaticity of walking and task-prioritization in healthy individuals and provides the basis for future studies to determine differences in neurologically impaired populations.


Author(s):  
Richard R. Neptune ◽  
Craig P. McGowan

Walking is a complex dynamic task that requires the generation of whole-body angular momentum to maintain dynamic balance and perform a wide range of locomotor tasks. Previous studies have shown that controlling angular momentum is essential to maintaining dynamic balance and preventing falls during walking [1] and recovering from a trip [2]. Others have suggested that angular momentum is highly regulated by the central nervous system [3] and that control synergies may be used to provide this regulation [4].


Sign in / Sign up

Export Citation Format

Share Document