scholarly journals Occupancy distributions of membrane proteins in heterogeneous liposome populations

2019 ◽  
Author(s):  
Lucy Cliff ◽  
Rahul Chadda ◽  
Janice L. Robertson

AbstractMeasurements of membrane protein structure and function often rely on reconstituting the protein into lipid bilayers through the formation of liposomes. Many measurements conducted in proteoliposomes, e.g. transport rates, single-molecule dynamics, monomer-oligomer equilibrium, require some understanding of the occupancy statistics of the liposome population for correct interpretation of the results. In homogenous liposomes, this is easy to calculate as the act of protein incorporation can be described by the Poisson distribution. However, in reality, liposomes are heterogeneous, which alters the statistics of occupancy in several ways. Here, we determine the liposome occupancy distribution for membrane protein reconstitution while taking into account liposome size heterogeneity. We calculate the protein occupancy for a homogenous population of liposomes with radius r = 200 nm, representing an idealization of vesicles extruded through 400 nm pores and compare it to the right-skewed distribution of 400 nm 2:1 POPE:POPG vesicles. As is the case for E. coli polar lipids, this synthetic composition yields a sub-population of small liposomes, ∼25 nm in radius with a long tail of larger vesicles. Previously published microscopy data of the co-localization of the CLC-ec1 Cl-/H+ transporter with liposomes, and vesicle occupancy measurements using functional transport assays, shows agreement with the heterogeneous 2:1 POPE:POPG population. Next, distributions of 100 nm and 30 nm extruded 2:1 POPE:POPG liposomes are measured by cryo-electron microscopy, demonstrating that extrusion through smaller pores does not shift the peak, but reduces polydispersity arising from large liposomes. Single-molecule photobleaching analysis of CLC-ec1-Cy5 shows the 30 nm extruded population increases the ‘Poisson-dilution’ range, reducing the probability of vesicles with more than one protein at higher protein/lipid densities. These results demonstrate that the occupancy distributions of membrane proteins into vesicles can be accurately predicted in heterogeneous populations with experimental knowledge of the liposome size distribution.

2018 ◽  
Vol 150 (2) ◽  
pp. 355-365 ◽  
Author(s):  
Rahul Chadda ◽  
Lucy Cliff ◽  
Marley Brimberry ◽  
Janice L. Robertson

The thermodynamic reasons why membrane proteins form stable complexes inside the hydrophobic lipid bilayer remain poorly understood. This is largely because of a lack of membrane–protein systems amenable for equilibrium studies and a limited number of methods for measuring these reactions. Recently, we reported the equilibrium dimerization of the CLC-ec1 Cl−/H+ transporter in lipid bilayers (Chadda et al. 2016. eLife. https://doi.org/10.7554/eLife.17438), which provided a new type of model system for studying protein association in membranes. The measurement was conducted using the subunit-capture approach, involving passive dilution of the protein in large multilamellar vesicles, followed by single-molecule photobleaching analysis of the Poisson distribution describing protein encapsulation into extruded liposomes. To estimate the fraction of dimers (FDimer) as a function of protein density, the photobleaching distributions for the nonreactive, ideal monomer and dimer species must be known so that random co-capture probabilities can be accounted for. Previously, this was done by simulating the Poisson process of protein reconstitution into a known size distribution of liposomes composed of Escherichia coli polar lipids (EPLs). In the present study, we investigate the dependency of FDimer and ΔG° on the modeling through a comparison of different liposome size distributions (EPL versus 2:1 POPE/POPG). The results show that the estimated FDimer values are comparable, except at higher densities when liposomes become saturated with protein. We then develop empirical controls to directly measure the photobleaching distributions of the nonreactive monomer (CLC-ec1 I201W/I422W) and ideal dimer (WT CLC-ec1 cross-linked by glutaraldehyde or CLC-ec1 R230C/L249C cross-linked by a disulfide bond). The measured equilibrium constants do not depend on the correction method used, indicating the robustness of the subunit-capture approach. This strategy therefore presents a model-free way to quantify protein dimerization in lipid bilayers, offering a simplified strategy in the ongoing effort to characterize equilibrium membrane–protein reactions in membranes.


2017 ◽  
Vol 6 (1) ◽  
pp. 75-92 ◽  
Author(s):  
Elka R. Georgieva

AbstractCellular membranes and associated proteins play critical physiological roles in organisms from all life kingdoms. In many cases, malfunction of biological membranes triggered by changes in the lipid bilayer properties or membrane protein functional abnormalities lead to severe diseases. To understand in detail the processes that govern the life of cells and to control diseases, one of the major tasks in biological sciences is to learn how the membrane proteins function. To do so, a variety of biochemical and biophysical approaches have been used in molecular studies of membrane protein structure and function on the nanoscale. This review focuses on electron paramagnetic resonance with site-directed nitroxide spin-labeling (SDSL EPR), which is a rapidly expanding and powerful technique reporting on the local protein/spin-label dynamics and on large functionally important structural rearrangements. On the other hand, adequate to nanoscale study membrane mimetics have been developed and used in conjunction with SDSL EPR. Primarily, these mimetics include various liposomes, bicelles, and nanodiscs. This review provides a basic description of the EPR methods, continuous-wave and pulse, applied to spin-labeled proteins, and highlights several representative applications of EPR to liposome-, bicelle-, or nanodisc-reconstituted membrane proteins.


Author(s):  
Jan Zaucha ◽  
Michael Heinzinger ◽  
A Kulandaisamy ◽  
Evans Kataka ◽  
Óscar Llorian Salvádor ◽  
...  

Abstract Membrane proteins are unique in that they interact with lipid bilayers, making them indispensable for transporting molecules and relaying signals between and across cells. Due to the significance of the protein’s functions, mutations often have profound effects on the fitness of the host. This is apparent both from experimental studies, which implicated numerous missense variants in diseases, as well as from evolutionary signals that allow elucidating the physicochemical constraints that intermembrane and aqueous environments bring. In this review, we report on the current state of knowledge acquired on missense variants (referred to as to single amino acid variants) affecting membrane proteins as well as the insights that can be extrapolated from data already available. This includes an overview of the annotations for membrane protein variants that have been collated within databases dedicated to the topic, bioinformatics approaches that leverage evolutionary information in order to shed light on previously uncharacterized membrane protein structures or interaction interfaces, tools for predicting the effects of mutations tailored specifically towards the characteristics of membrane proteins as well as two clinically relevant case studies explaining the implications of mutated membrane proteins in cancer and cardiomyopathy.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1476
Author(s):  
Katarina Vaskovicova ◽  
Petra Vesela ◽  
Jakub Zahumensky ◽  
Dagmar Folkova ◽  
Maria Balazova ◽  
...  

Membrane proteins are targeted not only to specific membranes in the cell architecture, but also to distinct lateral microdomains within individual membranes to properly execute their biological functions. Yeast tetraspan protein Nce102 has been shown to migrate between such microdomains within the plasma membrane in response to an acute drop in sphingolipid levels. Combining microscopy and biochemistry methods, we show that upon gradual ageing of a yeast culture, when sphingolipid demand increases, Nce102 migrates from the plasma membrane to the vacuole. Instead of being targeted for degradation it localizes to V-ATPase-poor, i.e., ergosterol-enriched, domains of the vacuolar membrane, analogous to its plasma membrane localization. We discovered that, together with its homologue Fhn1, Nce102 modulates vacuolar morphology, dynamics, and physiology. Specifically, the fusing of vacuoles, accompanying a switch of fermenting yeast culture to respiration, is retarded in the strain missing both proteins. Furthermore, the absence of either causes an enlargement of ergosterol-rich vacuolar membrane domains, while the vacuoles themselves become smaller. Our results clearly show decreased stability of the V-ATPase in the absence of either Nce102 or Fhn1, a possible result of the disruption of normal microdomain morphology of the vacuolar membrane. Therefore, the functionality of the vacuole as a whole might be compromised in these cells.


Author(s):  
Alyssa E. Ward ◽  
Yujie Ye ◽  
Jennifer A. Schuster ◽  
Shushu Wei ◽  
Francisco N. Barrera

The study of membrane proteins is undergoing a golden era, and we are gaining unprecedented knowledge on how this key group of proteins works. However, we still have only a basic understanding of how the chemical composition and the physical properties of lipid bilayers control the activity of membrane proteins. Single-molecule (SM) fluorescence methods can resolve sample heterogeneity, allowing to discriminate between the different molecular populations that biological systems often adopt. This short review highlights relevant examples of how SM fluorescence methodologies can illuminate the different ways in which lipids regulate the activity of membrane proteins. These studies are not limited to lipid molecules acting as ligands, but also consider how the physical properties of the bilayer can be determining factors on how membrane proteins function.


2019 ◽  
Author(s):  
Matthias Wilm

1.AbstractNanoelectrospray can be used to generate a layered structure consisting of bipolar lipids, detergent-solubilized membrane proteins, and glycerol that self-assembles upon detergent extraction into one extended layer of a protein containing membrane. This manuscript presents the first evidence that this method might allow membrane protein complexes to assemble in this process.


2021 ◽  
Author(s):  
Kai Xue ◽  
Kumar Tekwani Movellan ◽  
Xizhou Cecily Zhang ◽  
Eszter E. Najbauer ◽  
Marcel C. Forster ◽  
...  

Solid-state NMR (ssNMR) is a versatile technique that can be used for the characterization of various materials, ranging from small molecules to biological samples, including membrane proteins, as reviewed here.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1032
Author(s):  
Sonia Khemaissa ◽  
Sandrine Sagan ◽  
Astrid Walrant

Tryptophan is an aromatic amino acid with unique physico-chemical properties. It is often encountered in membrane proteins, especially at the level of the water/bilayer interface. It plays a role in membrane protein stabilization, anchoring and orientation in lipid bilayers. It has a hydrophobic character but can also engage in many types of interactions, such as π–cation or hydrogen bonds. In this review, we give an overview of the role of tryptophan in membrane proteins and a more detailed description of the underlying noncovalent interactions it can engage in with membrane partners.


2009 ◽  
Vol 75 (23) ◽  
pp. 7356-7364 ◽  
Author(s):  
Jessica C. Zweers ◽  
Thomas Wiegert ◽  
Jan Maarten van Dijl

ABSTRACT Essential membrane proteins are generally recognized as relevant potential drug targets due to their exposed localization in the cell envelope. Unfortunately, high-level production of membrane proteins for functional and structural analyses is often problematic. This is mainly due to their high overall hydrophobicity. To develop new concepts for membrane protein overproduction, we investigated whether the biogenesis of overproduced membrane proteins is affected by stress response-related proteolytic systems in the membrane. For this purpose, the well-established expression host Bacillus subtilis was used to overproduce eight essential membrane proteins from B. subtilis and Staphylococcus aureus. The results show that the σW regulon (responding to cell envelope perturbations) and the CssRS two-component regulatory system (responding to unfolded exported proteins) set critical limits to membrane protein production in large quantities. The identified sigW or cssRS mutant B. subtilis strains with significantly improved capacity for membrane protein production are interesting candidate expression hosts for fundamental research and biotechnological applications. Importantly, our results pinpoint the interdependent expression and function of membrane-associated proteases as key parameters in bacterial membrane protein production.


Sign in / Sign up

Export Citation Format

Share Document