scholarly journals Phenotypic plasticity as a mechanism of cave colonization and adaptation

2019 ◽  
Author(s):  
Helena Bilandžija ◽  
Breanna Hollifield ◽  
Mireille Steck ◽  
Guanliang Meng ◽  
Mandy Ng ◽  
...  

ABSTRACTA widely accepted model for the evolution of cave animals posits colonization by surface ancestors followed by the acquisition of adaptations over many generations. However, the speed of cave adaptation in some species suggests mechanisms operating over shorter timescales. To address these mechanisms, we used Astyanax mexicanus, a teleost with ancestral surface morphs (surface fish, SF) and derived cave morphs (cavefish, CF). We exposed SF to completely dark conditions and identified numerous altered traits at both the gene expression and phenotypic levels. Remarkably, most of these alterations mimicked CF phenotypes. Our results indicate that cave-related traits can appear within a single generation by phenotypic plasticity. In the next generation, plasticity can be further refined. The initial plastic responses are random in adaptive outcome but may determine the subsequent course of evolution. Our study suggests that phenotypic plasticity contributes to the rapid evolution of cave-related traits in A. mexicanus.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Helena Bilandžija ◽  
Breanna Hollifield ◽  
Mireille Steck ◽  
Guanliang Meng ◽  
Mandy Ng ◽  
...  

A widely accepted model for the evolution of cave animals posits colonization by surface ancestors followed by the acquisition of adaptations over many generations. However, the speed of cave adaptation in some species suggests mechanisms operating over shorter timescales. To address these mechanisms, we used Astyanax mexicanus, a teleost with ancestral surface morphs (surface fish, SF) and derived cave morphs (cavefish, CF). We exposed SF to completely dark conditions and identified numerous altered traits at both the gene expression and phenotypic levels. Remarkably, most of these alterations mimicked CF phenotypes. Our results indicate that many cave-related traits can appear within a single generation by phenotypic plasticity. In the next generation, plasticity can be further refined. The initial plastic responses are random in adaptive outcome but may determine the subsequent course of evolution. Our study suggests that phenotypic plasticity contributes to the rapid evolution of cave-related traits in A. mexicanus.


2016 ◽  
Author(s):  
Ilkka Kronholm ◽  
Hanna Johannesson ◽  
Tarmo Ketola

AbstractPhenotypic plasticity is the ability of a genotype to produce different phenotypes under different environmental or developmental conditions. Phenotypic plasticity is an ubiquitous feature of living organisms, and is typically based on variable patterns of gene expression. However, the mechanisms by which gene expression is influenced and regulated during plastic responses are poorly understood in most organisms. While modifications to DNA and histone proteins have been implicated as likely candidates for generating and regulating phenotypic plasticity, specific details of each modification and its mode of operation have remained largely unknown. In this study, we investigated how epigenetic mechanisms affect phenotypic plasticity in the filamentous fungus Neurospora crassa. By measuring reaction norms of strains that are deficient in one of several key physiological processes we show that epigenetic mechanisms play a role in homeostasis and phenotypic plasticity of the fungus across a range of controlled environments. Effects on plasticity are specific to an environment and mechanism, indicating that epigenetic regulation is context dependent and is not governed by general plasticity genes. In our experiments with Neurospora, histone methylation and the RNA interference pathway had the greatest influence on phenotypic plasticity, while lack of DNA methylation had the least.


2016 ◽  
Vol 6 (12) ◽  
pp. 4009-4022 ◽  
Author(s):  
Ilkka Kronholm ◽  
Hanna Johannesson ◽  
Tarmo Ketola

Abstract Phenotypic plasticity is the ability of a genotype to produce different phenotypes under different environmental or developmental conditions. Phenotypic plasticity is a ubiquitous feature of living organisms, and is typically based on variable patterns of gene expression. However, the mechanisms by which gene expression is influenced and regulated during plastic responses are poorly understood in most organisms. While modifications to DNA and histone proteins have been implicated as likely candidates for generating and regulating phenotypic plasticity, specific details of each modification and its mode of operation have remained largely unknown. In this study, we investigated how epigenetic mechanisms affect phenotypic plasticity in the filamentous fungus Neurospora crassa. By measuring reaction norms of strains that are deficient in one of several key physiological processes, we show that epigenetic mechanisms play a role in homeostasis and phenotypic plasticity of the fungus across a range of controlled environments. In general, effects on plasticity are specific to an environment and mechanism, indicating that epigenetic regulation is context dependent and is not governed by general plasticity genes. Specifically, we found that, in Neurospora, histone methylation at H3K36 affected plastic response to high temperatures, H3K4 methylation affected plastic response to pH, but H3K27 methylation had no effect. Similarly, DNA methylation had only a small effect in response to sucrose. Histone deacetylation mainly decreased reaction norm elevation, as did genes involved in histone demethylation and acetylation. In contrast, the RNA interference pathway was involved in plastic responses to multiple environments.


Author(s):  
Franklin E. Zimring

The phenomenal growth of penal confinement in the United States in the last quarter of the twentieth century is still a public policy mystery. Why did it happen when it happened? What explains the unprecedented magnitude of prison and jail expansion? Why are the current levels of penal confinement so very close to the all-time peak rate reached in 2007? What is the likely course of levels of penal confinement in the next generation of American life? Are there changes in government or policy that can avoid the prospect of mass incarceration as a chronic element of governance in the United States? This study is organized around four major concerns: What happened in the 33 years after 1973? Why did these extraordinary changes happen in that single generation? What is likely to happen to levels of penal confinement in the next three decades? What changes in law or practice might reduce this likely penal future?


Author(s):  
Karen D. Williams ◽  
Marla B. Sokolowski

Why is there so much variation in insect behavior? This chapter will address the sources of behavioral variability, with a particular focus on phenotypic plasticity. Variation in social, nutritional, and seasonal environmental contexts during development and adulthood can give rise to phenotypic plasticity. To delve into mechanism underlying behavioral flexibility in insects, examples of polyphenisms, a type of phenotypic plasticity, will be discussed. Selected examples reveal that environmental change can affect gene expression, which in turn can affect behavioral plasticity. These changes in gene expression together with gene-by-environment interactions are discussed to illuminate our understanding of insect behavioral plasticity.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 62
Author(s):  
Won-Yong Jeon ◽  
Seyoung Mun ◽  
Wei Beng Ng ◽  
Keunsoo Kang ◽  
Kyudong Han ◽  
...  

Enzymatic biofuel cells (EBFCs) have excellent potential as components in bioelectronic devices, especially as active biointerfaces to regulate stem cell behavior for regenerative medicine applications. However, it remains unclear to what extent EBFC-generated electrical stimulation can regulate the functional behavior of human adipose-derived mesenchymal stem cells (hAD-MSCs) at the morphological and gene expression levels. Herein, we investigated the effect of EBFC-generated electrical stimulation on hAD-MSC cell morphology and gene expression using next-generation RNA sequencing. We tested three different electrical currents, 127 ± 9, 248 ± 15, and 598 ± 75 nA/cm2, in mesenchymal stem cells. We performed transcriptome profiling to analyze the impact of EBFC-derived electrical current on gene expression using next generation sequencing (NGS). We also observed changes in cytoskeleton arrangement and analyzed gene expression that depends on the electrical stimulation. The electrical stimulation of EBFC changes cell morphology through cytoskeleton re-arrangement. In particular, the results of whole transcriptome NGS showed that specific gene clusters were up- or down-regulated depending on the magnitude of applied electrical current of EBFC. In conclusion, this study demonstrates that EBFC-generated electrical stimulation can influence the morphological and gene expression properties of stem cells; such capabilities can be useful for regenerative medicine applications such as bioelectronic devices.


PLoS ONE ◽  
2011 ◽  
Vol 6 (7) ◽  
pp. e22953 ◽  
Author(s):  
Stefan Siebert ◽  
Mark D. Robinson ◽  
Sophia C. Tintori ◽  
Freya Goetz ◽  
Rebecca R. Helm ◽  
...  

Genome ◽  
2020 ◽  
pp. 1-11
Author(s):  
Bahar Patlar ◽  
Alberto Civetta

It has long been acknowledged that changes in the regulation of gene expression may account for major organismal differences. However, we still do not fully understand how changes in gene expression evolve and how do such changes influence organisms’ differences. We are even less aware of the impact such changes might have in restricting gene flow between species. Here, we focus on studies of gene expression and speciation in the Drosophila model. We review studies that have identified gene interactions in post-mating reproductive isolation and speciation, particularly those that modulate male gene expression. We also address studies that have experimentally manipulated changes in gene expression to test their effect in post-mating reproductive isolation. We highlight the need for a more in-depth analysis of the role of selection causing disrupted gene expression of such candidate genes in sterile/inviable hybrids. Moreover, we discuss the relevance to incorporate more routinely assays that simultaneously evaluate the potential effects of environmental factors and genetic background in modulating plastic responses in male genes and their potential role in speciation.


2015 ◽  
Vol 24 (13) ◽  
pp. 3345-3359 ◽  
Author(s):  
David I. Dayan ◽  
Douglas L. Crawford ◽  
Marjorie F. Oleksiak

Sign in / Sign up

Export Citation Format

Share Document