scholarly journals Construction of simplified microbial consortia to degrade recalcitrant materials based on enrichment and dilution-to-extinction cultures

2019 ◽  
Author(s):  
Dingrong Kang ◽  
Samuel Jacquiod ◽  
Jakob Herschend ◽  
Shaodong Wei ◽  
Joseph Nesme ◽  
...  

AbstractThe capacity of microbes degrading recalcitrant materials has been extensively explored from environmental remediation to industrial applications. Although significant achievements were obtained with single strains, focus is now going toward the use of microbial consortia because of advantages in terms of functional stability and efficiency. While consortia assembly attempts were made from several known single strains, another approach consists in obtaining consortia from complex environmental microbial communities in search for novel microbial species, genes and functions. However, assembling efficient microbial consortia from complex environmental communities is far from trivial due to large diversity and biotic interactions at play. Here we propose a strategy containing enrichment and dilution-to-extinction cultures to construct simplified microbial consortia (SMC) for keratinous waste management, from complex environmental communities. Gradual dilutions were performed from a keratinolytic microbial consortium, and dilution 10−9was selected to construct a SMC library. Further compositional analysis and keratinolytic activity assays demonstrated that microbial consortia were successfully simplified, without impacting their biodegradation capabilities. These SMC possess promising potential for efficient keratinous valorization. More importantly, this reasoning and methodology could be transferred to other topics involving screening for simplified communities for biodegradation, thus considerably broadening its application scope.ImportanceMicrobial consortia have got more and more attention and extensive applications due to their potential advantages. However, a high diversity of microbes is likely to hide uncontrollable risks in practice specific to novel strains and complicated interaction networks. Exploring a convenient and efficient way to construct simplified microbial consortia is able to broaden the applied scope of microbes. This study presents the approach based on enrichment and dilution-to-extinction cultures, which gain abundance microbial consortia including some without losing efficiency from the enriched functional microbial community. The microbial interactions at the strain level were evaluated by using compositional identification and correlation analysis, which contribute to revealing the roles of microbes in the degradation process of recalcitrant materials. Our findings provide a systematic scheme to achieve optimizing microbial consortia for biodegradation from an environmental sample, could be readily applied to a range of recalcitrant materials management from environmental remediation to industrial applications.

2020 ◽  
Vol 48 (2) ◽  
pp. 399-409
Author(s):  
Baizhen Gao ◽  
Rushant Sabnis ◽  
Tommaso Costantini ◽  
Robert Jinkerson ◽  
Qing Sun

Microbial communities drive diverse processes that impact nearly everything on this planet, from global biogeochemical cycles to human health. Harnessing the power of these microorganisms could provide solutions to many of the challenges that face society. However, naturally occurring microbial communities are not optimized for anthropogenic use. An emerging area of research is focusing on engineering synthetic microbial communities to carry out predefined functions. Microbial community engineers are applying design principles like top-down and bottom-up approaches to create synthetic microbial communities having a myriad of real-life applications in health care, disease prevention, and environmental remediation. Multiple genetic engineering tools and delivery approaches can be used to ‘knock-in' new gene functions into microbial communities. A systematic study of the microbial interactions, community assembling principles, and engineering tools are necessary for us to understand the microbial community and to better utilize them. Continued analysis and effort are required to further the current and potential applications of synthetic microbial communities.


RSC Advances ◽  
2016 ◽  
Vol 6 (81) ◽  
pp. 78161-78169 ◽  
Author(s):  
Jiajun Hu ◽  
Yiyun Xue ◽  
Jixiang Li ◽  
Lei Wang ◽  
Shiping Zhang ◽  
...  

CO2 fixation efficiency of the devised synthetic microbial consortia with both autotrophic–autotrophic and autotrophic–heterotrophic microbial interactions were higher than the sum of theoretical CO2 fixation efficiency of the microbial components.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 177
Author(s):  
Ahmed Barhoum ◽  
María Luisa García-Betancourt ◽  
Jaison Jeevanandam ◽  
Eman A. Hussien ◽  
Sara A. Mekkawy ◽  
...  

Nanomaterials are becoming important materials in several fields and industries thanks to their very reduced size and shape-related features. Scientists think that nanoparticles and nanostructured materials originated during the Big Bang process from meteorites leading to the formation of the universe and Earth. Since 1990, the term nanotechnology became very popular due to advances in imaging technologies that paved the way to specific industrial applications. Currently, nanoparticles and nanostructured materials are synthesized on a large scale and are indispensable for many industries. This fact fosters and supports research in biochemistry, biophysics, and biochemical engineering applications. Recently, nanotechnology has been combined with other sciences to fabricate new forms of nanomaterials that could be used, for instance, for diagnostic tools, drug delivery systems, energy generation/storage, environmental remediation as well as agriculture and food processing. In contrast with traditional materials, specific features can be integrated into nanoparticles, nanostructures, and nanosystems by simply modifying their scale, shape, and composition. This article first summarizes the history of nanomaterials and nanotechnology. Followed by the progress that led to improved synthesis processes to produce different nanoparticles and nanostructures characterized by specific features. The content finally presents various origins and sources of nanomaterials, synthesis strategies, their toxicity, risks, regulations, and self-aggregation.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1227
Author(s):  
Robert H. Hicks ◽  
Mauro Moreno-Beltrán ◽  
Deborah Gore-Lloyd ◽  
Christopher J. Chuck ◽  
Daniel A. Henk

Metschnikowia pulcherrima is a non-conventional yeast with potential to be used in biotechnological processes, especially those involving low-cost feedstock exploitation and biocontrol applications. The combination of traits that supports these industrial applications in M. pulcherrima also makes it an attractive option to study in the context of livestock health. In this study, we examined the specific interactions between M. pulcherrima and multiple avian pathogenic bacteria. We tested individual bacteria–yeast interactions and bacterial combinations in both solid and liquid media and in variable nutrient environments. Across multiple isolates of M. pulcherrima, we observed different levels of antimicrobial activity, varying from supporting the growth of competing bacteria through suppression and bacterial killing, and we found that these responses varied depending on the bacterial strains and media. We identified multiple molecular routes, including proteins produced by M. pulcherrima strains, that acted to control these microbial interactions. Furthermore, protein screening revealed that M. pulcherrima strains were induced to produce proteins specifically when exposed to bacterial strains, suggesting that fine-tuned mechanisms allow M. pulcherrima to function as a potential lynchpin in a microbial community.


2021 ◽  
Vol 22 (11) ◽  
Author(s):  
RIRYN NOVIANTY ◽  
ANNISA HIDAYAH ◽  
SARYONO SARYONO ◽  
AMIR AWALUDDIN ◽  
NOVA WAHYU PRATIWI ◽  
...  

Abstract. Novianty R, Saryono, Awaluddin A, Pratiwi NW, Hidayah A, Juliantari E. 2021. The diversity of fungi consortium isolated from polluted soil for degrading petroleum hydrocarbon. Biodiversitas 22: 5077-5084. One of the major problems in the petroleum industry nowadays is crude oil spills. Riau Province, Sumatra is one of the largest oil producers in Indonesia. Accidental releases of petroleum products are of particular concern to the environment. The process of drilling and refining petroleum generates a large amount of oil sludge. One of the effective technologies used in the waste degradation process is bioremediation using certain microorganisms. The prime objective of the current research was to evaluate the efficiency of fungi consortiums in crude oil degradation in Bumi Siak Pusako-Pertamina Hulu, Indonesia. There are three potential fungi isolates as petroleum hydrocarbon degradation agents with four consortium variations. The parameter values of Optical Density (OD), pH, and diluted CO2 were measured on 0, 4, 8, and 16 days. To evaluate the fungal biodegradation activity using Gas Chromatography-Mass Spectrometry (GC-MS). The result showed that consortium II (KF II) has the highest potential to degrade petroleum hydrocarbon (50.61%). The visual GC-MS examination confirmed a decrease in the peak area for eight hydrocarbon compounds, indicating the efficiency of the fungi in the oil decomposition and dismantling of hydrocarbons. Our findings may provide new information on native fungal resources from chronically contaminated terrestrial environments, and will be useful for petroleum-contaminated bioremediation and other industrial applications.  


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Kateryna Zhalnina ◽  
Karsten Zengler ◽  
Dianne Newman ◽  
Trent R. Northen

ABSTRACTThe chemistry underpinning microbial interactions provides an integrative framework for linking the activities of individual microbes, microbial communities, plants, and their environments. Currently, we know very little about the functions of genes and metabolites within these communities because genome annotations and functions are derived from the minority of microbes that have been propagated in the laboratory. Yet the diversity, complexity, inaccessibility, and irreproducibility of native microbial consortia limit our ability to interpret chemical signaling and map metabolic networks. In this perspective, we contend that standardized laboratory ecosystems are needed to dissect the chemistry of soil microbiomes. We argue that dissemination and application of standardized laboratory ecosystems will be transformative for the field, much like how model organisms have played critical roles in advancing biochemistry and molecular and cellular biology. Community consensus on fabricated ecosystems (“EcoFABs”) along with protocols and data standards will integrate efforts and enable rapid improvements in our understanding of the biochemical ecology of microbial communities.


2021 ◽  
Author(s):  
RUBALYA VALANTINA S ◽  
Amsavahini S ◽  
Janani S ◽  
Monisha G

Abstract Nanoparticle TiO2 was synthesized by the co-precipitate method and was dispersed in palm oil blended with Moringa oleifera seed oil (Enriched palm oil-EPO). Structural and compositional analysis of TiO2 nanoparticles was carried out using SEM (Scanning Electron Microscope), XRD (X-Ray Diffraction) and FTIR analysis (Fourier Transform Infrared Spectroscopy). Using the analytical method, particle dimension, crystallite size by Debye Scherrer’s equation and vibrational energy of the molecule was investigated. Palm oil was blended with synthesised Moring oil to enhance its oxidative stability. TiO2 nanoparticles were dispersed at different volume fraction in EPO to analyse the temperature dependent physical properties. Bio-degradable lubricant nature of TiO2 based nanofluid was investigated by the variation of viscosity and density with temperature (30 to 60˚C). The amphiphilic properties of fatty acids in blended oils can contribute better lubrication compared to mineral oils. Experimented viscosity and density values with temperature was fitted to a non-linear equations, and was pragmatic that quadratic equation exhibits a best fit R2 > 0.999. Theoretical value of the viscosity was predicted using Einstein, Batchelor, and Wang mathematical model and was compared with the experimental value. Brownian motion of the particle in the oil was studied through the diffusion constant, diffusion time, and Brownian velocity. The present study could be used to synthesis nanofluid with desired volume fraction, viscosities and densities, so as work as a suitable bio degradable lubricant in many industrial applications.


2018 ◽  
Author(s):  
Laura Marvin ◽  
Wynter Paiva ◽  
Nicole Gill ◽  
Marissa A. Morales ◽  
Jeffrey Mark Halpern ◽  
...  

<div>Biological and bioinspired polymer microparticles have broad biomedical and industrial applications, including drug delivery, tissue engineering, surface modification, environmental remediation, imaging, and sensing. Full realization of the potential of biopolymer microparticles will require methods for rigorous characterization of particle sizes, morphologies, and dynamics, so that researchers may correlate particle characteristics with synthesis methods and desired functions. Toward this end, we evaluated biopolymer microparticles using flow imaging microscopy. This technology is widely used in the biopharmaceutical industry but is not yet well-known among the materials community. Our polymer, a genetically engineered elastin-like polypeptide (ELP), self-assembles into micron-scale coacervates. We performed flow imaging of ELP coacervates using two different instruments, one with a lower size limit of approximately 2 microns, the other with a lower size limit of approximately 300 nanometers. We validated flow imaging results by comparison with dynamic light scattering and atomic force microscopy analyses. We explored the effects of various solvent conditions on ELP coacervate size, morphology, and behavior, such as the dispersion of single particles versus aggregates. We found that flow imaging is a superior tool for rapid and thorough particle analysis of ELP coacervates in solution. We anticipate that researchers studying many types of microscale protein or polymer assemblies will be interested in flow imaging as a tool for quantitative, solution-based characterization.<br></div>


2022 ◽  
pp. 207-232
Author(s):  
Prashant Satishbhai Arya ◽  
Shivani Maheshkumar Yagnik ◽  
Rakeshkumar Ramanlal Panchal ◽  
Kiransinh Narendrasinh Rajput ◽  
Vikram Hiren Raval

Extremophilic microorganisms have developed a variety of molecular tactics to exist in extreme environments. Researchers are fascinated by extremophiles and unearth various enzymes from these fascinating microbes. Extremozymes are astonishing biocatalysts with distinctive properties of catalysis and stability under a multitude of daunting conditions of salt, pH, organic solvents, and temperature, which open up new possibilities for biocatalysis and biotransformation and outcompetes mesophilic counterparts. Biotechnological implications include simple, immobilized, as well as whole-cell applications. Stability in organic solvents adds to the asymmetric catalysis and thereby exemplifies the applicability of extremozymes and in fostering biobased economies. Marine, cold-adapted enzymes, and those that help in the removal of a toxic hazardous substance from the environment are obvious choices for food industries and bioremediation. The major area of application and research emphasis includes textile, detergents, food, dairy, agriculture, and environmental remediation.


2017 ◽  
Vol 199 (15) ◽  
Author(s):  
Antonella Succurro ◽  
Fiona Wanjiku Moejes ◽  
Oliver Ebenhöh

ABSTRACT The last few years have seen the advancement of high-throughput experimental techniques that have produced an extraordinary amount of data. Bioinformatics and statistical analyses have become instrumental to interpreting the information coming from, e.g., sequencing data and often motivate further targeted experiments. The broad discipline of “computational biology” extends far beyond the well-established field of bioinformatics, but it is our impression that more theoretical methods such as the use of mathematical models are not yet as well integrated into the research studying microbial interactions. The empirical complexity of microbial communities presents challenges that are difficult to address with in vivo/in vitro approaches alone, and with microbiology developing from a qualitative to a quantitative science, we see stronger opportunities arising for interdisciplinary projects integrating theoretical approaches with experiments. Indeed, the addition of in silico experiments, i.e., computational simulations, has a discovery potential that is, unfortunately, still largely underutilized and unrecognized by the scientific community. This minireview provides an overview of mathematical models of natural ecosystems and emphasizes that one critical point in the development of a theoretical description of a microbial community is the choice of problem scale. Since this choice is mostly dictated by the biological question to be addressed, in order to employ theoretical models fully and successfully it is vital to implement an interdisciplinary view at the conceptual stages of the experimental design.


Sign in / Sign up

Export Citation Format

Share Document