Flow Imaging Microscopy as a Novel Tool for High-Throughput Evaluation of Elastin-like Polymer Coacervates

Author(s):  
Laura Marvin ◽  
Wynter Paiva ◽  
Nicole Gill ◽  
Marissa A. Morales ◽  
Jeffrey Mark Halpern ◽  
...  

<div>Biological and bioinspired polymer microparticles have broad biomedical and industrial applications, including drug delivery, tissue engineering, surface modification, environmental remediation, imaging, and sensing. Full realization of the potential of biopolymer microparticles will require methods for rigorous characterization of particle sizes, morphologies, and dynamics, so that researchers may correlate particle characteristics with synthesis methods and desired functions. Toward this end, we evaluated biopolymer microparticles using flow imaging microscopy. This technology is widely used in the biopharmaceutical industry but is not yet well-known among the materials community. Our polymer, a genetically engineered elastin-like polypeptide (ELP), self-assembles into micron-scale coacervates. We performed flow imaging of ELP coacervates using two different instruments, one with a lower size limit of approximately 2 microns, the other with a lower size limit of approximately 300 nanometers. We validated flow imaging results by comparison with dynamic light scattering and atomic force microscopy analyses. We explored the effects of various solvent conditions on ELP coacervate size, morphology, and behavior, such as the dispersion of single particles versus aggregates. We found that flow imaging is a superior tool for rapid and thorough particle analysis of ELP coacervates in solution. We anticipate that researchers studying many types of microscale protein or polymer assemblies will be interested in flow imaging as a tool for quantitative, solution-based characterization.<br></div>

2018 ◽  
Author(s):  
Laura Marvin ◽  
Wynter Paiva ◽  
Nicole Gill ◽  
Marissa A. Morales ◽  
Jeffrey Mark Halpern ◽  
...  

<div>Biological and bioinspired polymer microparticles have broad biomedical and industrial applications, including drug delivery, tissue engineering, surface modification, environmental remediation, imaging, and sensing. Full realization of the potential of biopolymer microparticles will require methods for rigorous characterization of particle sizes, morphologies, and dynamics, so that researchers may correlate particle characteristics with synthesis methods and desired functions. Toward this end, we evaluated biopolymer microparticles using flow imaging microscopy. This technology is widely used in the biopharmaceutical industry but is not yet well-known among the materials community. Our polymer, a genetically engineered elastin-like polypeptide (ELP), self-assembles into micron-scale coacervates. We performed flow imaging of ELP coacervates using two different instruments, one with a lower size limit of approximately 2 microns, the other with a lower size limit of approximately 300 nanometers. We validated flow imaging results by comparison with dynamic light scattering and atomic force microscopy analyses. We explored the effects of various solvent conditions on ELP coacervate size, morphology, and behavior, such as the dispersion of single particles versus aggregates. We found that flow imaging is a superior tool for rapid and thorough particle analysis of ELP coacervates in solution. We anticipate that researchers studying many types of microscale protein or polymer assemblies will be interested in flow imaging as a tool for quantitative, solution-based characterization.<br></div>


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Giyaullah Habibullah ◽  
Jitka Viktorova ◽  
Tomas Ruml

AbstractNoble metals have played an integral part in human history for centuries; however, their integration with recent advances in nanotechnology and material sciences have provided new research opportunities in both academia and industry, which has resulted in a new array of advanced applications, including medical ones. Noble metal nanoparticles (NMNPs) have been of great importance in the field of biomedicine over the past few decades due to their importance in personalized healthcare and diagnostics. In particular, platinum, gold and silver nanoparticles have achieved the most dominant spot in the list, thanks to a very diverse range of industrial applications, including biomedical ones such as antimicrobial and antiviral agents, diagnostics, drug carriers and imaging probes. In particular, their superior resistance to extreme conditions of corrosion and oxidation is highly appreciated. Notably, in the past two decades there has been a tremendous advancement in the development of new strategies of more cost-effective and robust NMNP synthesis methods that provide materials with highly tunable physicochemical, optical and thermal properties, and biochemical functionalities. As a result, new advanced hybrid NMNPs with polymer, graphene, carbon nanotubes, quantum dots and core–shell systems have been developed with even more enhanced physicochemical characteristics that has led to exceptional diagnostic and therapeutic applications. In this review, we aim to summarize current advances in the synthesis of NMNPs (Au, Ag and Pt).


2013 ◽  
Vol 15 (4) ◽  
pp. 1200-1211 ◽  
Author(s):  
Sarah Zölls ◽  
Daniel Weinbuch ◽  
Michael Wiggenhorn ◽  
Gerhard Winter ◽  
Wolfgang Friess ◽  
...  

1999 ◽  
Vol 67 (10) ◽  
pp. 920-922 ◽  
Author(s):  
Boye K. Ahlborn ◽  
Robert W. Blake

Author(s):  
João Marcos Pereira Galúcio ◽  
Sorrel Godinho Barbosa de Souza ◽  
Arthur Abinader Vasconcelos ◽  
Alan Kelbis Oliveira Lima ◽  
Kauê Santana da Costa ◽  
...  

: Nanotechnology is a cutting-edge area with numerous industrial applications. Nanoparticles are structures that have dimensions ranging from 1–100 nm which exhibit significantly different mechanical, optical, electrical, and chemical properties when compared with their larger counterparts. Synthetic routes that use natural sources, such as plant extracts, honey, and microorganisms are environmentally friendly and low-cost methods that can be used to obtain nanoparticles. These methods of synthesis generate products that are more stable and less toxic than those obtained using conventional methods. Nanoparticles formed by titanium dioxide, zinc oxide, silver, gold, and copper, as well as cellulose nanocrystals are among the nanostructures obtained by green synthesis that have shown interesting applications in several technological industries. Several analytical techniques have also been used to analyze the size, morphology, hydrodynamics, diameter, and chemical functional groups involved in the stabilization of the nanoparticles as well as to quantify and evaluate their formation. Despite their pharmaceutical, biotechnological, cosmetic, and food applications, studies have detected their harmful effects on human health and the environment; and thus, caution must be taken in uses involving living organisms. The present review aims to present an overview of the applications, the structural properties, and the green synthesis methods that are used to obtain nanoparticles, and special attention is given to those obtained from metal ions. The review also presents the analytical methods used to analyze, quantify, and characterize these nanostructures.


2018 ◽  
Vol 8 (10) ◽  
pp. 1925 ◽  
Author(s):  
Thiago Oliveira ◽  
Simone Morais

Multi-walled carbon nanotubes (MWCNT) have provided unprecedented advances in the design of electrochemical sensors. They are composed by sp2 carbon units oriented as multiple concentric tubes of rolled-up graphene, and present remarkable active surface area, chemical inertness, high strength, and low charge-transfer resistance in both aqueous and non-aqueous solutions. MWCNT are very versatile and have been boosting the development of a new generation of electrochemical sensors with application in medicine, pharmacology, food industry, forensic chemistry, and environmental fields. This work highlights the most important synthesis methods and relevant electrochemical properties of MWCNT for the construction of electrochemical sensors, and the numerous configurations and successful applications of these devices. Thousands of studies have been attesting to the exceptional electroanalytical performance of these devices, but there are still questions in MWCNT electrochemistry that deserve more investigation, aiming to provide new outlooks and advances in this field. Additionally, MWCNT-based sensors should be further explored for real industrial applications including for on-line quality control.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 177
Author(s):  
Ahmed Barhoum ◽  
María Luisa García-Betancourt ◽  
Jaison Jeevanandam ◽  
Eman A. Hussien ◽  
Sara A. Mekkawy ◽  
...  

Nanomaterials are becoming important materials in several fields and industries thanks to their very reduced size and shape-related features. Scientists think that nanoparticles and nanostructured materials originated during the Big Bang process from meteorites leading to the formation of the universe and Earth. Since 1990, the term nanotechnology became very popular due to advances in imaging technologies that paved the way to specific industrial applications. Currently, nanoparticles and nanostructured materials are synthesized on a large scale and are indispensable for many industries. This fact fosters and supports research in biochemistry, biophysics, and biochemical engineering applications. Recently, nanotechnology has been combined with other sciences to fabricate new forms of nanomaterials that could be used, for instance, for diagnostic tools, drug delivery systems, energy generation/storage, environmental remediation as well as agriculture and food processing. In contrast with traditional materials, specific features can be integrated into nanoparticles, nanostructures, and nanosystems by simply modifying their scale, shape, and composition. This article first summarizes the history of nanomaterials and nanotechnology. Followed by the progress that led to improved synthesis processes to produce different nanoparticles and nanostructures characterized by specific features. The content finally presents various origins and sources of nanomaterials, synthesis strategies, their toxicity, risks, regulations, and self-aggregation.


2016 ◽  
Vol 875 ◽  
pp. 24-44
Author(s):  
Ming Guo Ma ◽  
Shan Liu ◽  
Lian Hua Fu

CaCO3 has six polymorphs such as vaterite, aragonite, calcite, amorphous, crystalline monohydrate, and hexahydrate CaCO3. CaCO3 is a typical biomineral that is abundant in both organisms and nature and has important industrial applications. Cellulose could be used as feedstocks for producing biofuels, bio-based chemicals, and high value-added bio-based materials. In the past, more attentions have been paid to the synthesis and applications of CaCO3 and cellulose/CaCO3 nanocomposites due to its relating properties such as mechanical strength, biocompatibility, and biodegradation, and bioactivity, and potential applications including biomedical, antibacterial, and water pretreatment fields as functional materials. A variety of synthesis methods such as the hydrothermal/solvothermal method, biomimetic mineralization method, microwave-assisted method, (co-) precipitation method, and sonochemistry method, were employed to the preparation of CaCO3 and cellulose/CaCO3 nanocomposites. In this chapter, the recent development of CaCO3 and cellulose/CaCO3 nanocomposites has been reviewed. The synthesis, characterization, and biomedical applications of CaCO3 and cellulose/CaCO3 nanocomposites are summarized. The future developments of CaCO3 and cellulose/CaCO3 nanocomposites are also suggested.


Sign in / Sign up

Export Citation Format

Share Document