scholarly journals Integration of Alzheimer’s disease genetics and myeloid genomics reveals novel disease risk mechanisms

2019 ◽  
Author(s):  
Gloriia Novikova ◽  
Manav Kapoor ◽  
Julia TCW ◽  
Edsel M. Abud ◽  
Anastasia G. Efthymiou ◽  
...  

AbstractGenome-wide association studies (GWAS) have identified more than thirty loci associated with Alzheimer’s disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown thus impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alleles are enriched in myeloid-specific epigenomic annotations. Here, we show that they are specifically enriched in active enhancers of monocytes, macrophages and microglia. We integrated AD GWAS signals with myeloid epigenomic and transcriptomic datasets using novel analytical approaches to link myeloid enhancer activity to target gene expression regulation and AD risk modification. We nominate candidate AD risk enhancers and identify their target causal genes (including AP4E1, AP4M1, APBB3, BIN1, CD2AP, MS4A4A, MS4A6A, PILRA, RABEP1, SPI1, SPPL2A, TP53INP1, ZKSCAN1, and ZYX) in sixteen loci. Fine-mapping of these enhancers nominates candidate functional variants that likely modify disease susceptibility by regulating causal gene expression in myeloid cells. In the MS4A locus we identified a single candidate functional variant and validated it experimentally in human induced pluripotent stem cell (hiPSC)-derived microglia. Combined, these results strongly implicate dysfunction of the myeloid endolysosomal system in the etiology of AD.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gloriia Novikova ◽  
Manav Kapoor ◽  
Julia TCW ◽  
Edsel M. Abud ◽  
Anastasia G. Efthymiou ◽  
...  

AbstractGenome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer’s disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alleles are enriched in myeloid-specific epigenomic annotations. Here, we show that they are specifically enriched in active enhancers of monocytes, macrophages and microglia. We integrated AD GWAS with myeloid epigenomic and transcriptomic datasets using analytical approaches to link myeloid enhancer activity to target gene expression regulation and AD risk modification. We identify AD risk enhancers and nominate candidate causal genes among their likely targets (including AP4E1, AP4M1, APBB3, BIN1, MS4A4A, MS4A6A, PILRA, RABEP1, SPI1, TP53INP1, and ZYX) in twenty loci. Fine-mapping of these enhancers nominates candidate functional variants that likely modify AD risk by regulating gene expression in myeloid cells. In the MS4A locus we identified a single candidate functional variant and validated it in human induced pluripotent stem cell (hiPSC)-derived microglia and brain. Taken together, this study integrates AD GWAS with multiple myeloid genomic datasets to investigate the mechanisms of AD risk alleles and nominates candidate functional variants, regulatory elements and genes that likely modulate disease susceptibility.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Gloriia Novikova ◽  
Shea J. Andrews ◽  
Alan E. Renton ◽  
Edoardo Marcora

AbstractAlzheimer’s disease (AD) is the most common type of dementia, affecting millions of people worldwide; however, no disease-modifying treatments are currently available. Genome-wide association studies (GWASs) have identified more than 40 loci associated with AD risk. However, most of the disease-associated variants reside in non-coding regions of the genome, making it difficult to elucidate how they affect disease susceptibility. Nonetheless, identification of the regulatory elements, genes, pathways and cell type/tissue(s) impacted by these variants to modulate AD risk is critical to our understanding of disease pathogenesis and ability to develop effective therapeutics. In this review, we provide an overview of the methods and approaches used in the field to identify the functional effects of AD risk variants in the causal path to disease risk modification as well as describe the most recent findings. We first discuss efforts in cell type/tissue prioritization followed by recent progress in candidate causal variant and gene nomination. We discuss statistical methods for fine-mapping as well as approaches that integrate multiple levels of evidence, such as epigenomic and transcriptomic data, to identify causal variants and risk mechanisms of AD-associated loci. Additionally, we discuss experimental approaches and data resources that will be needed to validate and further elucidate the effects of these variants and genes on biological pathways, cellular phenotypes and disease risk. Finally, we discuss future steps that need to be taken to ensure that AD GWAS functional mapping efforts lead to novel findings and bring us closer to finding effective treatments for this devastating disease.


2018 ◽  
Author(s):  
Masataka Kikuchi ◽  
Norikazu Hara ◽  
Mai Hasegawa ◽  
Akinori Miyashita ◽  
Ryozo Kuwano ◽  
...  

AbstractBackground:Genome-wide association studies (GWASs) have identified single-nucleotide polymorphisms (SNPs) that may be genetic factors underlying Alzheimer’s disease (AD). However, how these AD-associated SNPs (AD SNPs) contribute to the pathogenesis of this disease is poorly understood because most of them are located in non-coding regions, such as introns and intergenic regions. Previous studies reported that some disease-associated SNPs affect regulatory elements including enhancers. We hypothesized that non-coding AD SNPs are located in enhancers and affect gene expression levels via chromatin loops.Results:We examined enhancer locations that were predicted in 127 human tissues or cell types, including ten brain tissues, and identified chromatin-chromatin interactions by Hi-C experiments. We report the following findings: (1) nearly 30% of non-coding AD SNPs are located in enhancers; (2) expression quantitative trait locus (eQTL) genes affected by non-coding AD SNPs within enhancers are associated with amyloid beta clearance, synaptic transmission, and immune responses; (3) 95% of the AD SNPs located in enhancers co-localize with their eQTL genes in topologically associating domains suggesting that regulation may occur through chromatin higher-order structures; (4) rs1476679 spatially contacts the promoters of eQTL genes via CTCF-CTCF interactions; (5) the effect of other AD SNPs such as rs7364180 is likely to be, at least in part, indirect through regulation of transcription factors that in turn regulate AD associated genes.Conclusion:Our results suggest that non-coding AD SNPs may affect the function of enhancers thereby influencing the expression levels of surrounding or distant genes via chromatin loops. This result may explain how some non-coding AD SNPs contribute to AD pathogenesis.


2021 ◽  
Author(s):  
Jielin Xu ◽  
Yuan Hou ◽  
Yadi Zhou ◽  
Ming Hu ◽  
Feixiong Cheng

Human genome sequencing studies have identified numerous loci associated with complex diseases, including Alzheimer's disease (AD). Translating human genetic findings (i.e., genome-wide association studies [GWAS]) to pathobiology and therapeutic discovery, however, remains a major challenge. To address this critical problem, we present a network topology-based deep learning framework to identify disease-associated genes (NETTAG). NETTAG is capable of integrating multi-genomics data along with the protein-protein interactome to infer putative risk genes and drug targets impacted by GWAS loci. Specifically, we leverage non-coding GWAS loci effects on expression quantitative trait loci (eQTLs), histone-QTLs, and transcription factor binding-QTLs, enhancers and CpG islands, promoter regions, open chromatin, and promoter flanking regions. The key premises of NETTAG are that the disease risk genes exhibit distinct functional characteristics compared to non-risk genes and therefore can be distinguished by their aggregated genomic features under the human protein interactome. Applying NETTAG to the latest AD GWAS data, we identified 156 putative AD-risk genes (i.e., APOE, BIN1, GSK3B, MARK4, and PICALM). We showed that predicted risk genes are: 1) significantly enriched in AD-related pathobiological pathways, 2) more likely to be differentially expressed regarding transcriptome and proteome of AD brains, and 3) enriched in druggable targets with approved medicines (i.e., choline and ibudilast). In summary, our findings suggest that understanding of human pathobiology and therapeutic development could benefit from a network-based deep learning methodology that utilizes GWAS findings under the multimodal genomic analyses.


2021 ◽  
Author(s):  
Jianfeng Wu ◽  
Yanxi Chen ◽  
Panwen Wang ◽  
Richard J Caselli ◽  
Paul M Thompson ◽  
...  

Alzheimer's disease (AD) affects more than 1 in 9 people age 65 and older and becomes an urgent public health concern as the global population ages. In clinical practice, structural magnetic resonance imaging (sMRI) is the most accessible and widely used diagnostic imaging modality. Additionally, genome-wide association studies (GWAS) and transcriptomic, the study of gene expression, also play an important role in understanding AD etiology and progression. Sophisticated imaging genetics systems have been developed to discover genetic factors that consistently affect brain function and structure. However, most studies to date focused on the relationships between brain sMRI and GWAS or brain sMRI and transcriptomics. To our knowledge, few methods have been developed to discover and infer multimodal relationships among sMRI, GWAS, and transcriptomics. To address this, we propose a novel federated model, Genotype-Expression-Imaging Data Integration (GEIDI), to identify genetic and transcriptomic influences on brain sMRI measures. The relationships between brain imaging measures and gene expression are allowed to depend on a person's genotype at the single-nucleotide polymorphism (SNP) level, making the inferences adaptive and personalized. We performed extensive experiments on publicly available Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Experimental results demonstrated our proposed method outperformed state-of-the-art expression quantitative trait loci (eQTL) methods for detecting genetic and transcriptomic factors related to AD and has stable performance when data are integrated from multiple sites. Our GEIDI approach may offer novel insights into the relationship among image biomarkers, genotypes, and gene expression and help discover novel genetic targets for potential AD drug treatments.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Masataka Kikuchi ◽  
Norikazu Hara ◽  
Mai Hasegawa ◽  
Akinori Miyashita ◽  
Ryozo Kuwano ◽  
...  

Abstract Background Genome-wide association studies (GWASs) have identified single-nucleotide polymorphisms (SNPs) that may be genetic factors underlying Alzheimer’s disease (AD). However, how these AD-associated SNPs (AD SNPs) contribute to the pathogenesis of this disease is poorly understood because most of them are located in non-coding regions, such as introns and intergenic regions. Previous studies reported that some disease-associated SNPs affect regulatory elements including enhancers. We hypothesized that non-coding AD SNPs are located in enhancers and affect gene expression levels via chromatin loops. Methods To characterize AD SNPs within non-coding regions, we extracted 406 AD SNPs with GWAS p-values of less than 1.00 × 10− 6 from the GWAS catalog database. Of these, we selected 392 SNPs within non-coding regions. Next, we checked whether those non-coding AD SNPs were located in enhancers that typically regulate gene expression levels using publicly available data for enhancers that were predicted in 127 human tissues or cell types. We sought expression quantitative trait locus (eQTL) genes affected by non-coding AD SNPs within enhancers because enhancers are regulatory elements that influence the gene expression levels. To elucidate how the non-coding AD SNPs within enhancers affect the gene expression levels, we identified chromatin-chromatin interactions by Hi-C experiments. Results We report the following findings: (1) nearly 30% of non-coding AD SNPs are located in enhancers; (2) eQTL genes affected by non-coding AD SNPs within enhancers are associated with amyloid beta clearance, synaptic transmission, and immune responses; (3) 95% of the AD SNPs located in enhancers co-localize with their eQTL genes in topologically associating domains suggesting that regulation may occur through chromatin higher-order structures; (4) rs1476679 spatially contacts the promoters of eQTL genes via CTCF-CTCF interactions; (5) the effect of other AD SNPs such as rs7364180 is likely to be, at least in part, indirect through regulation of transcription factors that in turn regulate AD associated genes. Conclusion Our results suggest that non-coding AD SNPs may affect the function of enhancers thereby influencing the expression levels of surrounding or distant genes via chromatin loops. This result may explain how some non-coding AD SNPs contribute to AD pathogenesis.


Author(s):  
Sridharan Priya ◽  
Radhakrishnan Manavalana

Background: Neurological disorders diseases such as ALS, Alzheimer’s, epilepsy, Parkinson’s Disease, Autism, Atrial Fibrillation, and Sclerosis affect the central nervous system, including the brain, nerves, spinal cords, muscles, and Neuromuscular joint. These disorders are investigated by detecting the genetic variations in Single Nucleotide Polymorphism (SNP) in Genome-Wide Association Studies (GWAS). In the human genome sequence, one SNP influence the effects of another SNP. These SNP-SNP interactions or Gene-Gene interaction (Epistasis) significantly increases the risk of disease susceptibility to neurological disorders. Objective: The manual analyzes of various genetic interactions related to Neurological diseases are cumbersome. Hence, the computational system is effective for the discovery of Epistasis effects in Neurological syndromes. This study aims to explore various techniques of statistical, machine learning, optimization, so far applied to find the epistasis effect for neurological-disorder. Conclusion: This study finds several genetic interactions models involving different loci, various candidate genes, and SNP interactions involved in numerous neurological diseases. The gene APOE and its polymorphism increase Alzheimer's disease pathology. The gene GAB2 and its SNPs play a vital role in Alzheimer’s disease. The genes GABRA4, ITGB3, and SLC64A highly influence the genetic interactions for Autism disorder. In schizophrenia, the SNPs of NRG1 increases the disease risk. The benefits, limitations, and issues of the various computational techniques implemented for epistasis evaluation of neurological disease are deeply discussed.


2021 ◽  
Author(s):  
Andrew Ni ◽  
Amish Sethi ◽  

AbstractDetecting Alzheimer’s Disease (AD) at the earliest possible stage is key in advancing AD prevention and treatment but is challenged by normal aging processes in addition to other confounding neurodegenerative diseases. Recent genome-wide association studies (GWAS) have identified associated alleles, but it has been difficult to transition from non-coding genetic variants to underlying mechanisms of AD. Here, we sought to reveal functional genetic variants and diagnostic biomarkers underlying AD using machine learning techniques. We first developed a Random Forest (RF) classifier using microarray gene expression data sampled from the peripheral blood of 744 participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. After initial feature selection, 5-fold cross-validation of the 100-gene RF classifier achieved an accuracy of 99.04%. The high accuracy of the RF classifier supports the possibility of a powerful and minimally invasive tool for screening of AD. Next, unsupervised clustering was used to validate and identify relationships among differentially expressed genes (DEGs) the RF selected revealing 3 distinct AD clusters. Results suggest downregulation of global sulfatase and oxidoreductase activities in AD through mutations in SUMF1 and SMOX respectively. Then, we used Greedy Fast Causal Inference (GFCI) to find potential causes of AD within DEGs. In the causal graph, HLA-DPB1 and CYP4A11 emerge as hub genes, furthering the discussion of the immune system’s role in AD. Finally, we used Gene Set Enrichment Analysis (GSEA) to determine the biological pathways and processes underlying the DEGs that were highly correlated with AD. Cell activation in the immune system, glycosaminoglycan (GAG) binding, vascular dysfunction, oxidative stress, and the neuronal apoptotic process were revealed to be significantly enriched in AD. This study further advances the possibility of low-cost and noninvasive genetic screening for AD while also providing potential gene targets for further experimentation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jong-Ho Park ◽  
Inho Park ◽  
Emilia Moonkyung Youm ◽  
Sejoon Lee ◽  
June-Hee Park ◽  
...  

AbstractAlzheimer’s disease (AD) is a progressive neurodegenerative disease associated with a complex genetic etiology. Besides the apolipoprotein E ε4 (APOE ε4) allele, a few dozen other genetic loci associated with AD have been identified through genome-wide association studies (GWAS) conducted mainly in individuals of European ancestry. Recently, several GWAS performed in other ethnic groups have shown the importance of replicating studies that identify previously established risk loci and searching for novel risk loci. APOE-stratified GWAS have yielded novel AD risk loci that might be masked by, or be dependent on, APOE alleles. We performed whole-genome sequencing (WGS) on DNA from blood samples of 331 AD patients and 169 elderly controls of Korean ethnicity who were APOE ε4 carriers. Based on WGS data, we designed a customized AD chip (cAD chip) for further analysis on an independent set of 543 AD patients and 894 elderly controls of the same ethnicity, regardless of their APOE ε4 allele status. Combined analysis of WGS and cAD chip data revealed that SNPs rs1890078 (P = 6.64E−07) and rs12594991 (P = 2.03E−07) in SORCS1 and CHD2 genes, respectively, are novel genetic variants among APOE ε4 carriers in the Korean population. In addition, nine possible novel variants that were rare in individuals of European ancestry but common in East Asia were identified. This study demonstrates that APOE-stratified analysis is important for understanding the genetic background of AD in different populations.


2018 ◽  
Author(s):  
Dervis A. Salih ◽  
Sevinc Bayram ◽  
Manuel S. Guelfi ◽  
Regina Reynolds ◽  
Maryam Shoai ◽  
...  

AbstractGenetic analysis of late-onset Alzheimer’s disease risk has previously identified a network of largely microglial genes that form a transcriptional network. In transgenic mouse models of amyloid deposition we have previously shown that the expression of many of the mouse orthologs of these genes are co-ordinately up-regulated by amyloid deposition. Here we investigate whether systematic analysis of other members of this mouse amyloid-responsive network predicts other Alzheimer’s risk loci. This statistical comparison of the mouse amyloid-response network with Alzheimer’s disease genome-wide association studies identifies 5 other genetic risk loci for the disease (OAS1, CXCL10, LAPTM5, ITGAM and LILRB4). This work suggests that genetic variability in the microglial response to amyloid deposition is a major determinant for Alzheimer’s risk.One Sentence SummaryIdentification of 5 new risk loci for Alzheimer’s by statistical comparison of mouse Aβ microglial response with gene-based SNPs from human GWAS


Sign in / Sign up

Export Citation Format

Share Document