scholarly journals Climate change alters beneficial crop-microbe-invertebrate interactions

2019 ◽  
Author(s):  
Sharon E. Zytynska ◽  
Moritz Eicher ◽  
Michael Rothballer ◽  
Wolfgang W. Weisser

Increasing levels of CO2 and tropospheric ozone (O3) due to climate change are contributing to reduced plant health and unstable crop yield production1. The inoculation of plant roots with beneficial fungi or bacteria can increase plant health2. However, this is often studied under very controlled conditions and it is unknown how climate change or interactions with other species can alter the resulting benefits. Here we show that the rhizosphere bacterium Acidovorax radicis N35 can increase plant growth and reduce insect growth – with increased impact in a high-stress elevated O3 environment, but reduced impact under elevated CO2. In a fully-factorial climate chamber experiment we disentangled the impacts of climate factors (elevated CO2 and elevated O3) and biotic interactions (plant cultivar, sap-feeding insects and earthworms) on cereal growth and insect suppression mediated by A. radicis N35. Earthworms promoted plant aboveground growth, whereas A. radicis N35 promoted root growth, and overall plant growth was higher when both species were present. However, earthworms also promoted insect growth and therefore increased plant damage through herbivory. While A. radicis N35 inoculation was able to mitigate these negative effects to some extent under an ambient environment this was lost under climate change conditions. Our results show that knowledge-based solutions for sustainable agriculture should include biotic interactions and must be tested across variable climate change scenarios in order to build resilient cropping systems.

2011 ◽  
Vol 11 (12) ◽  
pp. 3275-3291 ◽  
Author(s):  
M. Ruiz-Ramos ◽  
E. Sánchez ◽  
C. Gallardo ◽  
M. I. Mínguez

Abstract. Crops growing in the Iberian Peninsula may be subjected to damagingly high temperatures during the sensitive development periods of flowering and grain filling. Such episodes are considered important hazards and farmers may take insurance to offset their impact. Increases in value and frequency of maximum temperature have been observed in the Iberian Peninsula during the 20th century, and studies on climate change indicate the possibility of further increase by the end of the 21st century. Here, impacts of current and future high temperatures on cereal cropping systems of the Iberian Peninsula are evaluated, focusing on vulnerable development periods of winter and summer crops. Climate change scenarios obtained from an ensemble of ten Regional Climate Models (multimodel ensemble) combined with crop simulation models were used for this purpose and related uncertainty was estimated. Results reveal that higher extremes of maximum temperature represent a threat to summer-grown but not to winter-grown crops in the Iberian Peninsula. The study highlights the different vulnerability of crops in the two growing seasons and the need to account for changes in extreme temperatures in developing adaptations in cereal cropping systems. Finally, this work contributes to clarifying the causes of high-uncertainty impact projections from previous studies.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1198
Author(s):  
Nieves Goicoechea ◽  
Leyre Jiménez ◽  
Eduardo Prieto ◽  
Yolanda Gogorcena ◽  
Inmaculada Pascual ◽  
...  

The market demand together with the need for alternatives to withstand climate change led to the recovery of autochthonous grapevine varieties. Under climate change, the summer pruning of vineyards may lead to an increase of vegetative residuals of nutritional and medicinal interest. The objectives of our study were (1) to evaluate the nutritional properties of the leaves of three local Spanish grapevines (Tinto Velasco, TV, Pasera, PAS, and Ambrosina, AMB) when grown under climate change conditions, and (2) to test the potentiality of these grapevines as suitable candidates to be cultivated under climate change scenarios based on the quality of their must. Experimental assays were performed with fruit-bearing cuttings grown in temperature gradient greenhouses that simulate rising CO2 (700 μmoL moL−1) and warming (ambient temperature +4 °C), either acting alone or in combination. TV and AMB were the most and the least affected by air temperature and CO2 concentration, respectively. The interaction of elevated CO2 with high temperature induced the accumulation of proteins and phenolic compounds in leaves of TV, thus enhancing their nutritional properties. In PAS, the negative effect of high temperature on protein contents was compensated for by elevated CO2. Warming was the most threatening scenario for maintaining the must quality in the three varieties, but elevated CO2 exerted a beneficial effect when acting alone and compensated for the negative effects of high temperatures. While TV may be a candidate to be cultivated in not very warm areas (higher altitudes or colder latitudes), PAS behaved as the most stable genotype under different environmental scenarios, making it the most versatile candidate for cultivation in areas affected by climate change.


Author(s):  
Katja Seltmann ◽  
Julie Allen ◽  
Brian Brown ◽  
Adrian Carper ◽  
Michael Engel ◽  
...  

While bees are critical to sustaining a large proportion of global food production, as well as pollinating both wild and cultivated plants, they are decreasing in both numbers and diversity. Our understanding of the factors driving these declines is limited, in part, because we lack sufficient data on the distribution of bee species to predict changes in their geographic range under climate change scenarios. Additionally lacking is adequate data on the behavioral and anatomical traits that may make bees either vulnerable or resilient to human-induced environmental changes, such as habitat loss and climate change. Fortunately, a wealth of associated attributes can be extracted from the specimens deposited in natural history collections for over 100 years. Extending Anthophila Research Through Image and Trait Digitization (Big-Bee) is a newly funded US National Science Foundation Advancing Digitization of Biodiversity Collections project. Over the course of three years, we will create over one million high-resolution 2D and 3D images of bee specimens (Fig. 1), representing over 5,000 worldwide bee species, including most of the major pollinating species. We will also develop tools to measure bee traits from images and generate comprehensive bee trait and image datasets to measure changes through time. The Big-Bee network of participating institutions includes 13 US institutions (Fig. 2) and partnerships with US government agencies. We will develop novel mechanisms for sharing image datasets and datasets of bee traits that will be available through an open, Symbiota-Light (Gilbert et al. 2020) data portal called the Bee Library. In addition, biotic interaction and species association data will be shared via Global Biotic Interactions (Poelen et al. 2014). The Big-Bee project will engage the public in research through community science via crowdsourcing trait measurements and data transcription from images using Notes from Nature (Hill et al. 2012). Training and professional development for natural history collection staff, researchers, and university students in data science will be provided through the creation and implementation of workshops focusing on bee traits and species identification. We are also planning a short, artistic college radio segment called "the Buzz" to get people excited about bees, biodiversity, and the wonders of our natural world.


1998 ◽  
Vol 133 (1) ◽  
pp. 135-148 ◽  
Author(s):  
A. DAVIES ◽  
T. JENKINS ◽  
A. PIKE ◽  
J. SHAO ◽  
I. CARSON ◽  
...  

2017 ◽  
Vol 34 (04) ◽  
pp. 304-312 ◽  
Author(s):  
Md. Abdur Rashid Sarker ◽  
Khorshed Alam ◽  
Jeff Gow

AbstractThis paper uses the framework of the Just–Pope production function to evaluate the impacts of climate change on yields of the rainfed Aman rice crop in Bangladesh. It analyses disaggregated district-level data on climate variables and Aman rice yield over a 48 year time horizon. The results reveal that changes in maximum temperatures have had positive and negative effects on yield in the linear and quadratic functional forms, respectively. However, the elasticity values in the variance function confirm that maximum temperature is risk-increasing for Aman rice while minimum temperature is likely to decrease yield variability. Rainfall has become risk-increasing for Aman rice. Based on three climate change scenarios, this paper also reveals that future climate change is expected to increase the variability of Aman rice yields. Finally, statistically significant dummies for different in-country climate zones require zone-specific adaptation policies to reduce the adverse impacts of climate change.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1609
Author(s):  
Susana Redondo-Gómez ◽  
Jennifer Mesa-Marín ◽  
Jesús A. Pérez-Romero ◽  
Javier López-Jurado ◽  
Jesús V. García-López ◽  
...  

Soil salinization is an environmental problem that adversely affects plant growth and crop productivity worldwide. As an alternative to the conventional approach of breeding salt-tolerant plant cultivars, we explored the use of plant-growth-promoting rhizobacteria (PGPR) from halophytic plants to enhance crop growth under saline conditions. Here, we report the effect of five PGPR consortia from halophytes on the growth of eight (alfalfa, flax, maize, millet, rice, strawberry, sunflower, and wheat) of the crops most commonly produced on salinized soils worldwide. To test the efficiency of halotolerant consortia, we designed a complex environmental matrix simulating future climate-change scenarios, including increased CO2 levels and temperature. Overall, biofertilizers enhanced growth of most crops with respect to non-inoculated control plants under different CO2 concentrations (400/700 ppm), temperatures (25/+4 °C), and salinity conditions (0 and 85 mM NaCl). Biofertilizers counteracted the detrimental effect of salinity on crop growth. Specifically, strawberry and rice showed the greatest positive additive response to inoculation in the presence of salt; above-ground biomasses were 35% and 3% greater, respectively, than their respective control grown without salt. Furthermore, depending on the interaction of environmental factors (salinity × CO2 × temperature) analyzed, the results varied—influencing the most effective biofertilizer determined for each crop now, or in the future. Our findings highlight the importance of conducting studies that consider stress interaction for realistic assessments of the potential of biofertilizers in a climate-changed world.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
S J Blamires ◽  
W I Sellers

Lay Summary. How climate change impacts animal extended phenotypes (EPs) is poorly understood. We modelled how temperature and humidity affects the ability of spider webs to intercept prey. We found humidity had negative effects at the extremes. Temperature, however, likely interacts with humidity to affect web tension and prey retention.


2015 ◽  
Vol 39 (4) ◽  
pp. 663-670 ◽  
Author(s):  
Priscila Jane Romano de Oliveira Gonçalves ◽  
Admilton Gonçalves Oliveira ◽  
Vanessa Fogaça Freitas ◽  
Nathaly Andreoli Chiari ◽  
Miguel Perez Navarro ◽  
...  

ABSTRACTSchizolobium parahyba pv. amazonicum (Huber ex Ducke) Barneby (paricá) occurs naturally in the Amazon and is significant commercial importance due to its rapid growth and excellent performance on cropping systems. The aim of this paper was to evaluate a microbial inoculants such as arbuscular mycorrhiza fungi (AMF) and Rhizobium sp. that promote plant growth. The inocula was 10 g of root colonized and spores of Glomus clarum and/or 1 mL of cell suspension (107 CFU/mL) of Rhizobium sp. and/or 100 g of chemical fertilizer NPK 20-05-20 per planting hole. The experimental design was complete randomized blocks with five replications and eight treatments (n = 800). Plant height, stem diameter and plant survival were measured. The results were tested for normality and homogeneity of variances and analyzed by ANOVA and Tukey test (p < 0.05). Rhizobium sp and AM fungi showed no effect on plant growth. Environmental factors probably influenced the effectiveness of symbiosis of both microorganisms and plant growth. The chemical fertilizer increased S. parahyba growth. During the first 120 days plants suffered with drought and frost, and at 180 days plants inoculated with microorganism plus chemical fertilizer showed higher survival when compared with control. The results showed that the microbial inoculants used showed an important role on plant survival after high stress conditions, but not in plant growth. Also was concluded that the planting time should be between November to December to avoid the presence of young plants during winter time that is dry and cold.


Water SA ◽  
2021 ◽  
Vol 47 (1 January) ◽  
Author(s):  
Simone Norah Theron ◽  
Harold Louw Weepener ◽  
Jacobus Johannes Le Roux ◽  
Christina Johanna Engelbrecht

The effects of climate change on water resources could be numerous and widespread, affecting water quality and water security across the globe. Variations in rainfall erosivity and temporal patterns, along with changes in biomass and land use, are some of the impacts climate change is projected to have on soil erosion. Sedimentation of watercourses and reservoirs, especially in water-stressed regions such as sub-Saharan Africa, may hamper climate change resilience. Modelling sediment yield under various climate change scenarios is vital to develop mitigation strategies which offset the negative effects of erosion and ensure infrastructure remains sustainable under future climate change. This study investigated the relative change in sediment yield with projected climate change using the Soil and Water Assessment Tool (SWAT) for a rural catchment in South Africa for the period 2015–2100. Data from six downscaled Coupled Global Climate Models (CGCM) were divided into three shorter time periods, namely, 2015–2034, 2045–2064 and 2081–2100. Results were then compared with a control scenario using observed data for the period 2002–2017. The results show that, if left unmanaged, climate change will likely lead to greater sediment yield, of up to 10% more per annum. Peak sediment yield will also increase almost three-fold throughout the century. The study shows that projected climate change will have multiple negative effects on soil erosion and emphasised the need for changes in climate to be considered when embarking on water resource developments.


1997 ◽  
Vol 130 (1) ◽  
pp. 167-178 ◽  
Author(s):  
A. DAVIES ◽  
T. JENKINS ◽  
A. PIKE ◽  
J. SHAO ◽  
I. CARSON ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document