scholarly journals Modelling temperature and humidity effects on web performance: implications for predicting orb-web spider (Argiope spp.) foraging under Australian climate change scenarios

2019 ◽  
Vol 7 (1) ◽  
Author(s):  
S J Blamires ◽  
W I Sellers

Lay Summary. How climate change impacts animal extended phenotypes (EPs) is poorly understood. We modelled how temperature and humidity affects the ability of spider webs to intercept prey. We found humidity had negative effects at the extremes. Temperature, however, likely interacts with humidity to affect web tension and prey retention.

2021 ◽  
Author(s):  
Jorge Tamayo ◽  
Ernesto Rodriguez-Camino ◽  
Sara Covaleda

<p>The intersectoral workshop held in December 2016 among the Ibero-American networks on water (CODIA), climate change (RIOCC) and meteorology (CIMHET) identified the need to dispose of downscaled climate change scenarios for Central America. Such scenarios would be developed by National Meteorological and Hydrological Services (NMHS) in the region, based on a common methodology, allowing the assessment of climate change impacts on water resources and extreme hydro-meteorological events.</p><p>One final outcome of the project has been a freely accessible web viewer, installed on the Centro Clima webpage (https://centroclima.org/escenarios-cambio-climatico/), managed by CRRH-SICA, where all information generated during the project is available for consultation and data downloading by the different sectors of users.</p><p>A key element in this project has been to integrate many downscaled projections based on different methods (dynamical and statistical), totalizing 45 different projections, and aiming at estimating the uncertainty coming from different sources in the best possible way.</p><p>Another essential element has been the strong involvement of the different user sectors through national workshops, first, at the beginning of the project for the identification and definition of viewer features the project, and then for the presentation of results and planning of its use by prioritized sectors.</p><p>In a second phase of the project, a regional working group made up of experts from the NMHSs will be in charge of viewer maintenance and upgrade, including new sectoral parameters, developed in collaboration with interested users, and computation and addition of new downscaled projections from CMIP 6 in collaboration with AEMET.</p><p>Finally, following the request of CIMHET, the possibility of replicating this project for other areas of Ibero-America is being evaluated.</p>


2019 ◽  
Vol 18 (2) ◽  
pp. 29 ◽  
Author(s):  
Mar Ortega-Reig ◽  
Marta García-Mollá ◽  
Carles Sanchis-Ibor ◽  
Manuel Pulido-Velázquez ◽  
Corentin Girard ◽  
...  

<p>This paper develops a participatory methodology to integrate farmer’s vision in the design of an adaptation strategy to global change in the Jucar River basin. It aims at answering three questions: How farmers perceive climate change impacts; which adaptation measures they consider; and how they assess these measures. Participatory workshops with different actors were held in two areas (La Ribera and La Mancha Oriental). This methodology has allowed identifying the local impacts and consequences of global change, and the difficulties of the adaptation processes to climate change scenarios.</p>


Author(s):  
Yar M. Taraky ◽  
Yongbo Liu ◽  
Bahram Gharabaghi ◽  
Edward McBean ◽  
Prasad Daggupati ◽  
...  

While climate change impacts vary globally, for the Kabul River Basin (KRB), concerns are primarily associated with frequent flooding. This research describes the influence of headwater reservoirs on projections of climate change impacts and flood frequency, and how the riparian countries can benefit from storing of floodwaters for use during dry seasons. Six climate change scenarios and two Representative Concentration Pathways (RCPs) are used in three periods of a quarter-century each. The Soil and Water Assessment Tool (SWAT) is used to assess how the proposed reservoirs will reduce flooding by ~38% during the wet season, reduce the flood frequency from five to 25 years return period, and increase low flows by ~110% during the dry season, which reflect an ~17.5% reduction in the glacier-covered area by the end of the century. The risks and benefits of reservoirs are highlighted in light of the developmental goals of Afghanistan and Pakistan.


Biology ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 199 ◽  
Author(s):  
Konstantinos Kougioumoutzis ◽  
Ioannis P. Kokkoris ◽  
Maria Panitsa ◽  
Panayiotis Trigas ◽  
Arne Strid ◽  
...  

Human-induced biodiversity loss has been accelerating since the industrial revolution. The climate change impacts will severely alter the biodiversity and biogeographical patterns at all scales, leading to biotic homogenization. Due to underfunding, a climate smart, conservation-prioritization scheme is needed to optimize species protection. Spatial phylogenetics enable the identification of endemism centers and provide valuable insights regarding the eco-evolutionary and conservation value, as well as the biogeographical origin of a given area. Many studies exist regarding the conservation prioritization of mainland areas, yet none has assessed how climate change might alter the biodiversity and biogeographical patterns of an island biodiversity hotspot. Thus, we conducted a phylogenetically informed, conservation prioritization study dealing with the effects of climate change on Crete’s plant diversity and biogeographical patterns. Using several macroecological analyses, we identified the current and future endemism centers and assessed the impact of climate change on the biogeographical patterns in Crete. The highlands of Cretan mountains have served as both diversity cradles and museums, due to their stable climate and high topographical heterogeneity, providing important ecosystem services. Historical processes seem to have driven diversification and endemic species distribution in Crete. Due to the changing climate and the subsequent biotic homogenization, Crete’s unique bioregionalization, which strongly reminiscent the spatial configuration of the Pliocene/Pleistocene Cretan paleo-islands, will drastically change. The emergence of the ‘Anthropocene’ era calls for the prioritization of biodiversity-rich areas, serving as mixed-endemism centers, with high overlaps among protected areas and climatic refugia.


2019 ◽  
Vol 11 (8) ◽  
pp. 2450 ◽  
Author(s):  
Noora Veijalainen ◽  
Lauri Ahopelto ◽  
Mika Marttunen ◽  
Jaakko Jääskeläinen ◽  
Ritva Britschgi ◽  
...  

Severe droughts cause substantial damage to different socio-economic sectors, and even Finland, which has abundant water resources, is not immune to their impacts. To assess the implications of a severe drought in Finland, we carried out a national scale drought impact analysis. Firstly, we simulated water levels and discharges during the severe drought of 1939–1942 (the reference drought) in present-day Finland with a hydrological model. Secondly, we estimated how climate change would alter droughts. Thirdly, we assessed the impact of drought on key water use sectors, with a focus on hydropower and water supply. The results indicate that the long-lasting reference drought caused the discharges to decrease at most by 80% compared to the average annual minimum discharges. The water levels generally fell to the lowest levels in the largest lakes in Central and South-Eastern Finland. Climate change scenarios project on average a small decrease in the lowest water levels during droughts. Severe drought would have a significant impact on water-related sectors, reducing water supply and hydropower production. In this way drought is a risk multiplier for the water–energy–food security nexus. We suggest that the resilience to droughts could be improved with region-specific drought management plans and by including droughts in existing regional preparedness exercises.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1323
Author(s):  
Rodrigo Castillo ◽  
Jorge A. Amador

The evaluation of intraseasonal, seasonal, and annual variability of rainfall and temperature extremes, while using climate change scenarios data, is extremely important for socio-economic activities, such as water resources management. Costa Rica, a climate change hotspot, is largely dependent on rainfall for socioeconomic activities; hence, the relevance of this study. Based on the NEX-GDDP, rainfall and temperature range were analyzed for Costa Rica at the end of the century (2070–2099), while using 1970–1999 as a baseline for six available meteorological stations. Differences between the multimodel ensembles of two prospective scenarios (RCP 4.5 and 8.5) and the historical information were computed. This study highlights Costa Rica as an inflexion region for climate change impacts in Central America, for which projected scenarios suggest an early onset of the rainy season, and a decline in the mid-summer drought (MSD) minimum. The assessment of model data in some regions of Costa Rica, for which historical data were available, suggests that the latter does not capture a well-known regional climate feature, the MSD, in both precipitation and temperature range well. The availability of observed past data sources is a major limitation of this research; however, with the station data used, it is still possible to draw some conclusions regarding future climate in some regions of Costa Rica, especially in the northwest side of the country, where past data are consistent with model information, providing a more reliable picture of changes in climate there that has potential implications for socioeconomic sectors.


2002 ◽  
Vol 6 (2) ◽  
pp. 197-209 ◽  
Author(s):  
F. Bouraoui ◽  
L. Galbiati ◽  
G. Bidoglio

Abstract. This study assessed the impact of potential climate change on the nutrient loads to surface and sub-surface waters from agricultural areas and was conducted using the Soil and Water Assessment Tool (SWAT) model. The study focused on a 3500 km2 catchment located in northern England, the Yorkshire Ouse. The SWAT model was calibrated and validated using sets of five years' measurements of nitrate and ortho-phosphorus concentrations and water flow. To increase the reliability of the hydrological model predictions, an uncertainty analysis was conducted by perturbing input parameters using a Monte-Carlo technique. The SWAT model was then run using a baseline scenario corresponding to an actual measured time series of daily temperature and precipitation, and six climate change scenarios. Because of the increase in temperature, all climate scenarios introduced an increase of actual evapotranspiration. Faster crop growth and an increased nutrient uptake resulted, as did an increase of annual losses of total nitrogen and phosphorus, however, with strong seasonal differences. Keywords: SWAT model, climate change, nutrient loads


2007 ◽  
Vol 55 (1) ◽  
pp. 9 ◽  
Author(s):  
Dinesh Rao ◽  
Ken Cheng ◽  
Marie E. Herberstein

A long-running debate in the spider literature concerns the function of the extra silk decorations in some spider webs. These decorations are appended to the web and constitute a highly visible signal, which is inconsistent with the trend towards web invisibility. Despite the sustained attention of researchers, the exact function of these decorations is yet to be understood. While most studies have focussed on testing particular hypotheses, there has been a dearth of natural history data regarding web decorations in field conditions. In this study we present baseline data regarding the influence of seasonality, microhabitat characteristics and ecology on the presence of web decorations in an Australian orb web spider, Argiope keyserlingi. In particular, we show that there is preference among spiders to build their webs between bushes and to face the south-east, but this preference does not influence decoration building.


2010 ◽  
Vol 8 (57) ◽  
pp. 457-471 ◽  
Author(s):  
Aaron M. T. Harmer ◽  
Todd A. Blackledge ◽  
Joshua S. Madin ◽  
Marie E. Herberstein

Spider silks exhibit remarkable properties, surpassing most natural and synthetic materials in both strength and toughness. Orb-web spider dragline silk is the focus of intense research by material scientists attempting to mimic these naturally produced fibres. However, biomechanical research on spider silks is often removed from the context of web ecology and spider foraging behaviour. Similarly, evolutionary and ecological research on spiders rarely considers the significance of silk properties. Here, we highlight the critical need to integrate biomechanical and ecological perspectives on spider silks to generate a better understanding of (i) how silk biomechanics and web architectures interacted to influence spider web evolution along different structural pathways, and (ii) how silks function in an ecological context, which may identify novel silk applications. An integrative, mechanistic approach to understanding silk and web function, as well as the selective pressures driving their evolution, will help uncover the potential impacts of environmental change and species invasions (of both spiders and prey) on spider success. Integrating these fields will also allow us to take advantage of the remarkable properties of spider silks, expanding the range of possible silk applications from single threads to two- and three-dimensional thread networks.


Sign in / Sign up

Export Citation Format

Share Document