scholarly journals Alpha oscillations in the human brain implement distractor suppression independent of target selection

2019 ◽  
Author(s):  
Malte Wöstmann ◽  
Mohsen Alavash ◽  
Jonas Obleser

AbstractIn principle, selective attention is the net result of target selection and distractor suppression. The way in which both mechanisms are implemented neurally has remained contested. Neural oscillatory power in the alpha frequency band (~10 Hz) has been implicated in the selection of to-be-attended targets, but there is lack of empirical evidence for its involvement in the suppression of to-be-ignored distractors. Here, we use electroencephalography (EEG) recordings of N = 33 human participants (males and females) to test the pre-registered hypothesis that alpha power directly relates to distractor suppression and thus operates independently from target selection. In an auditory spatial pitch discrimination task, we modulated the location (left vs right) of either a target or a distractor tone sequence, while fixing the other in the front. When the distractor was fixed in the front, alpha power relatively decreased contralaterally to the target and increased ipsilaterally. Most importantly, when the target was fixed in the front, alpha lateralization reversed in direction for the suppression of distractors on the left versus right. These data show that target-selection–independent alpha power modulation is involved in distractor suppression. While both lateralized alpha responses for selection and for suppression proved reliable, they were uncorrelated and distractor-related alpha power emerged from more anterior, frontal cortical regions. Lending functional significance to suppression-related alpha oscillations, alpha lateralization at the individual, single-trial level was predictive of behavioral accuracy. These results fuel a renewed look at neurobiological accounts of selection-independent suppressive filtering in attention.Significance statementAlthough well-established models of attention rest on the assumption that irrelevant sensory information is filtered out, the neural implementation of such a filter mechanism is unclear. Using an auditory attention task that decouples target selection from distractor suppression, we demonstrate that two sign-reversed lateralized alpha responses reflect target selection versus distractor suppression. Critically, these alpha responses are reliable, independent of each other, and generated in more anterior, frontal regions for suppression versus selection. Prediction of single-trial task performance from alpha modulation after stimulus onset agrees with the view that alpha modulation bears direct functional relevance as a neural implementation of attention. Results demonstrate that the neurobiological foundation of attention implies a selection-independent alpha oscillatory mechanism to suppress distraction.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Leila Drissi-Daoudi ◽  
Adrien Doerig ◽  
Michael H. Herzog

Abstract Sensory information must be integrated over time to perceive, for example, motion and melodies. Here, to study temporal integration, we used the sequential metacontrast paradigm in which two expanding streams of lines are presented. When a line in one stream is offset observers perceive all other lines to be offset too, even though they are straight. When more lines are offset the offsets integrate mandatorily, i.e., observers cannot report the individual offsets. We show that mandatory integration lasts for up to 450 ms, depending on the observer. Importantly, integration occurs only when offsets are presented within a discrete window of time. Even stimuli that are in close spatio-temporal proximity do not integrate if they are in different windows. A window of integration starts with stimulus onset and integration in the next window has similar characteristics. We present a two-stage computational model based on discrete time windows that captures these effects.


2018 ◽  
Author(s):  
Elaine Y. L. Kwok ◽  
Janis Oram Cardy ◽  
Brian L. Allman ◽  
Prudence Allen ◽  
Björn Herrmann

AbstractEarly childhood is a period of tremendous growth in both language ability and brain maturation. To understand the dynamic interplay between neural activity and spoken language development, we used resting-state EEG recordings to explore the relation between alpha oscillations (7–10 Hz) and oral language ability in 4- to 6-year-old children with typical development (N=41). Three properties of alpha oscillations were investigated: a) alpha power using spectral analysis, b) flexibility of the alpha frequency quantified via the oscillation’s moment-to-moment fluctuations, and c) scaling behavior of the alpha oscillator investigated via the long-range temporal correlation in the alpha-amplitude time course. All three properties of the alpha oscillator correlated with children’s oral language abilities. Higher language scores were correlated with lower alpha power, greater flexibility of the alpha frequency, and longer temporal correlations in the alpha-amplitude time course. Our findings demonstrate a cognitive role of several properties of the alpha oscillator that has largely been overlooked in the literature. Graphical Abstract


2014 ◽  
Vol 26 (11) ◽  
pp. 2514-2529 ◽  
Author(s):  
Maximilien Chaumon ◽  
Niko A. Busch

The ongoing state of the brain radically affects how it processes sensory information. How does this ongoing brain activity interact with the processing of external stimuli? Spontaneous oscillations in the alpha range are thought to inhibit sensory processing, but little is known about the psychophysical mechanisms of this inhibition. We recorded ongoing brain activity with EEG while human observers performed a visual detection task with stimuli of different contrast intensities. To move beyond qualitative description, we formally compared psychometric functions obtained under different levels of ongoing alpha power and evaluated the inhibitory effect of ongoing alpha oscillations in terms of contrast or response gain models. This procedure opens the way to understanding the actual functional mechanisms by which ongoing brain activity affects visual performance. We found that strong prestimulus occipital alpha oscillations—but not more anterior mu oscillations—reduce performance most strongly for stimuli of the highest intensities tested. This inhibitory effect is best explained by a divisive reduction of response gain. Ongoing occipital alpha oscillations thus reflect changes in the visual system's input/output transformation that are independent of the sensory input to the system. They selectively scale the system's response, rather than change its sensitivity to sensory information.


2014 ◽  
Vol 111 (6) ◽  
pp. 1300-1307 ◽  
Author(s):  
Lei Ai ◽  
Tony Ro

Previous studies have shown that neural oscillations in the 8- to 12-Hz range influence sensory perception. In the current study, we examined whether both the power and phase of these mu/alpha oscillations predict successful conscious tactile perception. Near-threshold tactile stimuli were applied to the left hand while electroencephalographic (EEG) activity was recorded over the contralateral right somatosensory cortex. We found a significant inverted U-shaped relationship between prestimulus mu/alpha power and detection rate, suggesting that there is an intermediate level of alpha power that is optimal for tactile perception. We also found a significant difference in phase angle concentration at stimulus onset that predicted whether the upcoming tactile stimulus was perceived or missed. As has been shown in the visual system, these findings suggest that these mu/alpha oscillations measured over somatosensory areas exert a strong inhibitory control on tactile perception and that pulsed inhibition by these oscillations shapes the state of brain activity necessary for conscious perception. They further suggest that these common phasic processing mechanisms across different sensory modalities and brain regions may reflect a common underlying encoding principle in perceptual processing that leads to momentary windows of perceptual awareness.


2013 ◽  
Vol 25 (8) ◽  
pp. 1343-1357 ◽  
Author(s):  
Maite Crespo-Garcia ◽  
Diego Pinal ◽  
Jose L. Cantero ◽  
Fernando Díaz ◽  
Montserrat Zurrón ◽  
...  

Different cortical dynamics of alpha oscillations (8–13 Hz) have been associated with increased working memory load, which have been mostly interpreted as a neural correlate of functional inhibition. This study aims at determining whether different manifestations of load-dependent amplitude and phase dynamics in the alpha band can coexist over different cortical regions. To address this question, we increased information load by manipulating the number and spatial configuration of domino spots. Time–frequency analysis of EEG source activity revealed (i) load-independent increases of both alpha power and interregional alpha-phase synchrony within task-irrelevant, posterior cortical regions and (ii) load-dependent decreases of alpha power over areas of the left pFC and bilateral posterior parietal cortex (PPC) preceded in time by load-dependent decreases of alpha-phase synchrony between the left pFC and the left PPC. The former results support the role of alpha oscillations in inhibiting irrelevant sensorimotor processing, whereas the latter likely reflect release of parietal task-relevant areas from top–down inhibition with load increase. This interpretation found further support in a significant latency shift of 15 msec from pFC to the PPC. Together, these results suggest that amplitude and phase alpha dynamics in both local and long-range cortical networks reflect different neural mechanisms of top–down control that might be crucial in mediating the different working memory processes.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254162
Author(s):  
Brandon T. Paul ◽  
Joseph Chen ◽  
Trung Le ◽  
Vincent Lin ◽  
Andrew Dimitrijevic

Listening to speech in noise is effortful for individuals with hearing loss, even if they have received a hearing prosthesis such as a hearing aid or cochlear implant (CI). At present, little is known about the neural functions that support listening effort. One form of neural activity that has been suggested to reflect listening effort is the power of 8–12 Hz (alpha) oscillations measured by electroencephalography (EEG). Alpha power in two cortical regions has been associated with effortful listening—left inferior frontal gyrus (IFG), and parietal cortex—but these relationships have not been examined in the same listeners. Further, there are few studies available investigating neural correlates of effort in the individuals with cochlear implants. Here we tested 16 CI users in a novel effort-focused speech-in-noise listening paradigm, and confirm a relationship between alpha power and self-reported effort ratings in parietal regions, but not left IFG. The parietal relationship was not linear but quadratic, with alpha power comparatively lower when effort ratings were at the top and bottom of the effort scale, and higher when effort ratings were in the middle of the scale. Results are discussed in terms of cognitive systems that are engaged in difficult listening situations, and the implication for clinical translation.


2018 ◽  
Vol 30 (5) ◽  
pp. 667-679 ◽  
Author(s):  
David A. Vogelsang ◽  
Matthias Gruber ◽  
Zara M. Bergström ◽  
Charan Ranganath ◽  
Jon S. Simons

People can employ adaptive strategies to increase the likelihood that previously encoded information will be successfully retrieved. One such strategy is to constrain retrieval toward relevant information by reimplementing the neurocognitive processes that were engaged during encoding. Using EEG, we examined the temporal dynamics with which constraining retrieval toward semantic versus nonsemantic information affects the processing of new “foil” information encountered during a memory test. Time–frequency analysis of EEG data acquired during an initial study phase revealed that semantic compared with nonsemantic processing was associated with alpha decreases in a left frontal electrode cluster from around 600 msec after stimulus onset. Successful encoding of semantic versus nonsemantic foils during a subsequent memory test was related to decreases in alpha oscillatory activity in the same left frontal electrode cluster, which emerged relatively late in the trial at around 1000–1600 msec after stimulus onset. Across participants, left frontal alpha power elicited by semantic processing during the study phase correlated significantly with left frontal alpha power associated with semantic foil encoding during the memory test. Furthermore, larger left frontal alpha power decreases elicited by semantic foil encoding during the memory test predicted better subsequent semantic foil recognition in an additional surprise foil memory test, although this effect did not reach significance. These findings indicate that constraining retrieval toward semantic information involves reimplementing semantic encoding operations that are mediated by alpha oscillations and that such reimplementation occurs at a late stage of memory retrieval, perhaps reflecting additional monitoring processes.


2013 ◽  
Vol 25 (9) ◽  
pp. 1463-1476 ◽  
Author(s):  
Lisa Payne ◽  
Sylvia Guillory ◽  
Robert Sekuler

Combining high-density scalp EEG recordings with a sensitive analog measure of STM's fidelity, we characterized the temporal dynamics of intentional ignoring and related those dynamics to the intrusion of task-irrelevant information. On each trial of the task, two study Gabors were briefly presented in succession. A green or red disc preceding each Gabor signified whether that Gabor should be remembered or ignored, respectively. With cue–stimulus intervals of 300, 600, or 900 msec presented in separate sessions, we found that the onset of posterior, prestimulus alpha oscillations varied with the length of the interval. Although stimulus onset time was entirely predictable, the longer the cue–stimulus interval, the earlier the increase in prestimulus alpha power. However, the alpha-band modulation was not simply locked to the cue offset. The temporal envelopes of posterior alpha-band modulation were strikingly similar for both cued attending and cued ignoring and differed only in magnitude. This similarity suggests that cued attending includes suppression of task-irrelevant, spatial processing. Supporting the view that alpha-band oscillations represent inhibition, our graded measure of recall revealed that, when the stimulus to be ignored appears second in the sequence, peristimulus alpha power predicted the degree to which that irrelevant stimulus distorted subsequent recall of the stimulus that was to be remembered. These results demonstrate that timely deployment of attention-related alpha-band oscillations can aid STM by filtering out task-irrelevant information.


2020 ◽  
Author(s):  
Mireia Torralba ◽  
Alice Drew ◽  
Alba Sabaté San José ◽  
Luis Morís Fernández ◽  
Salvador Soto-Faraco

AbstractEndogenous brain processes play a paramount role in shaping up perceptual phenomenology, as illustrated by the alternations experienced by humans (and other animals) when watching perceptually ambiguous, static images. Here, we hypothesised that endogenous alpha fluctuations in the visual cortex pace the accumulation of sensory information leading to perceptual outcomes. We addressed this hypothesis using binocular rivalry combined with visual entrainment and electroencephalography in humans (42 female, 40 male). The results revealed a correlation between the individual frequency of alpha oscillations in the occipital cortex and perceptual alternation rates experienced during binocular rivalry. In subsequent experiments we show that regulating endogenous brain activity via entrainment produced corresponding changes in perceptual alternation rate, which were observed only in the alpha range but not at lower entrainment frequencies. Overall, rhythmic alpha stimulation resulted in faster perceptual alternation rates, compared to arrhythmic or no stimulation. These findings support the notion that visual information is accumulated via alpha cycles to promote the emergence of conscious perceptual representations. We suggest that models of binocular rivalry incorporating posterior alpha as a pacemaker can provide an important advance in the comprehension of the dynamics of visual awareness.Significance statementMainstream theories in cognitive neuroscience agree that endogenous brain processes play a paramount role in shaping our perceptual experience of sensory inputs. In vision, endogenous fluctuations in the alpha rhythm have been pointed out to regulate visual inputs to perception. In support of this hypothesis, here we used EEG recordings and visual entrainment to demonstrate that inter-individual differences in the speed of endogenous alpha fluctuations in the brain are causally related to the accrual of visual information to awareness. These findings provide, for the first time, evidence for alpha-gated regulation of the dynamics of alternations in conscious visual perception.


2018 ◽  
Vol 30 (8) ◽  
pp. 1157-1169 ◽  
Author(s):  
Rodolfo Solís-Vivanco ◽  
Ole Jensen ◽  
Mathilde Bonnefond

Alpha oscillations (8–14 Hz) are proposed to represent an active mechanism of functional inhibition of neuronal processing. Specifically, alpha oscillations are associated with pulses of inhibition repeating every ∼100 msec. Whether alpha phase, similar to alpha power, is under top–down control remains unclear. Moreover, the sources of such putative top–down phase control are unknown. We designed a cross-modal (visual/auditory) attention study in which we used magnetoencephalography to record the brain activity from 34 healthy participants. In each trial, a somatosensory cue indicated whether to attend to either the visual or auditory domain. The timing of the stimulus onset was predictable across trials. We found that, when visual information was attended, anticipatory alpha power was reduced in visual areas, whereas the phase adjusted just before the stimulus onset. Performance in each modality was predicted by the phase of the alpha oscillations previous to stimulus onset. Alpha oscillations in the left pFC appeared to lead the adjustment of alpha phase in visual areas. Finally, alpha phase modulated stimulus-induced gamma activity. Our results confirm that alpha phase can be top–down adjusted in anticipation of predictable stimuli and improve performance. Phase adjustment of the alpha rhythm might serve as a neurophysiological resource for optimizing visual processing when temporal predictions are possible and there is considerable competition between target and distracting stimuli.


Sign in / Sign up

Export Citation Format

Share Document