scholarly journals KAT2-mediated acetylation switches the mode of PALB2 chromatin association to safeguard genome integrity

2019 ◽  
Author(s):  
Marjorie Fournier ◽  
Jean-Yves Bleuyard ◽  
Anthony M. Couturier ◽  
Jessica Ellins ◽  
Svenja Hester ◽  
...  

SummaryThe tumour suppressor PALB2 stimulates error-free repair of DNA breaks, whilst its steady-state chromatin association protects active genes from genotoxic stress. Here, we report that the lysine acetyltransferases 2A and 2B (KAT2A/B), commonly known to promote transcriptional activation, acetylate the PALB2 chromatin association motif (ChAM), providing a dynamic regulatory mechanism for PALB2. ChAM acetylation within a cluster of seven lysine residues (7K), detected in the chromatin-enriched fraction in undamaged cells, enhanced its association with nucleosomes while decreasing its non-specific binding to naked DNA. DNA damage triggered a rapid deacetylation of ChAM and a concomitant increase in PALB2 mobility. Significantly, a 7K-null mutation, which hindered ChAM binding to both nucleosomes and DNA, conferred deficiency in DNA repair and hypersensitivity to the anti-cancer drug olaparib. Thus, our study reveals a unique mechanism mediated by KAT2A/B-dependent acetylation of a non-histone protein, which fine-tunes the DNA damage response and hence promotes genome stability.




2021 ◽  
Vol 22 (19) ◽  
pp. 10384
Author(s):  
Hirotomo Takatsuka ◽  
Atsushi Shibata ◽  
Masaaki Umeda

Genome integrity is constantly threatened by internal and external stressors, in both animals and plants. As plants are sessile, a variety of environment stressors can damage their DNA. In the nucleus, DNA twines around histone proteins to form the higher-order structure “chromatin”. Unraveling how chromatin transforms on sensing genotoxic stress is, thus, key to understanding plant strategies to cope with fluctuating environments. In recent years, accumulating evidence in plant research has suggested that chromatin plays a crucial role in protecting DNA from genotoxic stress in three ways: (1) changes in chromatin modifications around damaged sites enhance DNA repair by providing a scaffold and/or easy access to DNA repair machinery; (2) DNA damage triggers genome-wide alterations in chromatin modifications, globally modulating gene expression required for DNA damage response, such as stem cell death, cell-cycle arrest, and an early onset of endoreplication; and (3) condensed chromatin functions as a physical barrier against genotoxic stressors to protect DNA. In this review, we highlight the chromatin-level control of genome stability and compare the regulatory systems in plants and animals to find out unique mechanisms maintaining genome integrity under genotoxic stress.



2019 ◽  
Vol 93 (22) ◽  
Author(s):  
Samuel G. Salamun ◽  
Justine Sitz ◽  
Carlos F. De La Cruz-Herrera ◽  
Jaime Yockteng-Melgar ◽  
Edyta Marcon ◽  
...  

ABSTRACT The BMRF1 protein of Epstein-Barr virus (EBV) has multiple roles in viral lytic infection, including serving as the DNA polymerase processivity factor, activating transcription from several EBV promoters and inhibiting the host DNA damage response to double-stranded DNA breaks (DSBs). Using affinity purification coupled to mass spectrometry, we identified the nucleosome remodeling and deacetylation (NuRD) complex as the top interactor of BMRF1. We further found that NuRD components localize with BMRF1 at viral replication compartments and that this interaction occurs through the BMRF1 C-terminal region previously shown to mediate transcriptional activation. We identified an RBBP4 binding motif within this region that can interact with both RBBP4 and MTA2 components of the NuRD complex and showed that point mutation of this motif abrogates NuRD binding as well as the ability of BMRF1 to activate transcription from the BDLF3 and BLLF1 EBV promoters. In addition to its role in transcriptional regulation, NuRD has been shown to contribute to DSB signaling in enabling recruitment of RNF168 ubiquitin ligase and subsequent ubiquitylation at the break. We showed that BMRF1 inhibited RNF168 recruitment and ubiquitylation at DSBs and that this inhibition was at least partly relieved by loss of the NuRD interaction. The results reveal a mechanism by which BMRF1 activates transcription and inhibits DSB signaling and a novel role for NuRD in transcriptional activation in EBV. IMPORTANCE The Epstein-Barr virus (EBV) BMRF1 protein is critical for EBV infection, playing key roles in viral genome replication, activation of EBV genes, and inhibition of host DNA damage responses (DDRs). Here we show that BMRF1 targets the cellular nucleosome remodeling and deacetylation (NuRD) complex, using a motif in the BMRF1 transcriptional activation sequence. Mutation of this motif disrupts the ability of BMRF1 to activate transcription and interfere with DDRs, showing the importance of the NuRD interaction for BMRF1 functions. BMRF1 was shown to act at the same step in the DDR as NuRD, suggesting that it interferes with NuRD function.



Mutagenesis ◽  
2019 ◽  
Vol 35 (1) ◽  
pp. 107-118
Author(s):  
Bakhyt T Matkarimov ◽  
Dmitry O Zharkov ◽  
Murat K Saparbaev

Abstract Genotoxic stress generates single- and double-strand DNA breaks either through direct damage by reactive oxygen species or as intermediates of DNA repair. Failure to detect and repair DNA strand breaks leads to deleterious consequences such as chromosomal aberrations, genomic instability and cell death. DNA strand breaks disrupt the superhelical state of cellular DNA, which further disturbs the chromatin architecture and gene activity regulation. Proteins from the poly(ADP-ribose) polymerase (PARP) family, such as PARP1 and PARP2, use NAD+ as a substrate to catalyse the synthesis of polymeric chains consisting of ADP-ribose units covalently attached to an acceptor molecule. PARP1 and PARP2 are regarded as DNA damage sensors that, upon activation by strand breaks, poly(ADP-ribosyl)ate themselves and nuclear acceptor proteins. Noteworthy, the regularly branched structure of poly(ADP-ribose) polymer suggests that the mechanism of its synthesis may involve circular movement of PARP1 around the DNA helix, with a branching point in PAR corresponding to one complete 360° turn. We propose that PARP1 stays bound to a DNA strand break end, but rotates around the helix displaced by the growing poly(ADP-ribose) chain, and that this rotation could introduce positive supercoils into damaged chromosomal DNA. This topology modulation would enable nucleosome displacement and chromatin decondensation around the lesion site, facilitating the access of DNA repair proteins or transcription factors. PARP1-mediated DNA supercoiling can be transmitted over long distances, resulting in changes in the high-order chromatin structures. The available structures of PARP1 are consistent with the strand break-induced PAR synthesis as a driving force for PARP1 rotation around the DNA axis.



Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 428-428
Author(s):  
Si Chen ◽  
Noemi A. Zambetti ◽  
Zhen Ping ◽  
Keane Kenswil ◽  
Maria Mylona ◽  
...  

Abstract Primary alterations of the mesenchymal niche can induce myelodysplasia and acute myeloid leukemia in mouse models, introducing a concept of niche-driven leukemogenesis (Raaijmakers et al, Nature 2010). The molecular mechanisms and human relevance of this concept, however, have remained elusive. We addressed these key questions by modelling Shwachman-Diamond-Syndrome (SDS), a human monogenic congenital disorder caused by loss-of function mutation in the SBDS gene and characterized by skeletal defects, bone marrow failure and a striking propensity for leukemic evolution. Targeted Sbds deletion from mesenchymal progenitor cells (MPCs) in mice (OsxCre/+Sbdsf/f; OCSf/f) resulted in bone abnormalities faithfully recapitulating human disease, including short stature and early-onset osteoporosis. Skeletal defects were associated with genotoxic stress in hematopoietic stem and progenitor cells (HSPCs) as demonstrated by mitochondrial membrane hyperpolarization, oxidative stress, DNA damage and cell cycle checkpoint activation (transcriptional modulation of DNA damage response/repair pathways and G0-G1 cell cycle arrest). DNA damage could be partially rescued by in vivo administration of the ROS scavenger N-acetylcysteine supporting the notion of niche induced DNA damage in HSPCs induced by mitochondria-derived superoxide radicals. Mechanistically, Sbds deficiency caused activation of the p53 tumor suppressorpathway in MPCs (upregulation of P53 and transcriptional activation of downstream targets (GSEA). Genetic deletion of Trp53 from MPCs (Osxcre/+Sbdsf/fTrp53f/f mice) rescued the skeletal phenotype and genotoxic stress in HSPCs. Comparison of the transcriptome of MPCs from OCSf/f mice to their highly FACS-purified mesenchymal (CD45-CD235-7AAD-CD31-CD271+CD105+) human equivalents from SDS patients (RNAseq; n=5) demonstrated a striking overlap in disrupted gene programs (GSEA), including ribosome biogenesis and significant overexpression of the proinflammatory molecules such as S100A8 and S100A9, bona fide p53 downstream targets. Activation of p53 and inflammatory molecules was an MPC-autonomous consequence of Sbds depletion as demonstrated by ex vivo knockdown of the gene in OP9 cells. S100A8/A9 overexpression and secretion from MPCs from OCSf/f mice was confirmed by FCM and serum ELISA. Exposure of HSPCs to recombinant murine S100A8/9 resulted in increased DNA damage and apoptosis associated with transcriptional activation of TLR4 downstream signaling, a bona fide S100A8A9 receptor. In vivo TLR4 blockade by neutralizing antibodies resulted in reduced γH2AX foci in HSPCs from OCSf/f mice, in support of the existence of a Tpr53-S100A8/A9-TLR4 axis driving genotoxic stress. Formal demonstration that niche-derived S100A8/9 is sufficient to drive genotoxic stress in HSPCs was provided by transplantation of wild-type hematopoietic cells into recipient S100A8/A9 transgenic mice (Cheng et al., 2008) resulting in accumulation of mitochondrial superoxide radicals and DNA-damage in wild-type HSPCs. Finally, to further define the clinical relevance of this inflammatory MPC-HSPC axis to human disease, we performed massive parallel RNA-sequencing of FACS purified mesenchymal cells from homogeneously treated low-risk MDS patients (n=45). Overexpression of S100A8 and S100A9 in MPCs(confirmed by IHC) was found in a considerable subset of patients (17/45; 38%). S100A8/9+ mesenchymal cells displayed transcriptional activation of p53 and TLR programs, in line with findings in the mouse model. Strikingly, patients in the niche-S100A8/9+ group displayed a higher frequency of leukemia evolution (29.4% vs. 14.2%) with significantly shorter evolution time (average 3.4 (1-7.5) vs 18.5 (7-40); p=.03) and progression-free survival (median 11.5 vs. 53 months, p=.03), independent of established prognostic factors and risk classification systems. Collectively, the data define niche-HSPC inflammatory signaling through the p53-S100A8/A9-TLR axis as an actionable determinant of genotoxic stress and disease outcome in human preleukemia, opening the way to niche-instructed, therapeutic targeting to attenuate leukemic evolution. Disclosures No relevant conflicts of interest to declare.



2019 ◽  
Vol 116 (36) ◽  
pp. 18021-18030 ◽  
Author(s):  
Jiajia Tang ◽  
Giada Frascaroli ◽  
Robert J. Lebbink ◽  
Eleonore Ostermann ◽  
Wolfram Brune

Human cytomegalovirus (HCMV), like many other DNA viruses, can cause genome instability and activate a DNA damage response (DDR). Activation of ataxia-telangiectasia mutated (ATM), a kinase activated by DNA breaks, is a hallmark of the HCMV-induced DDR. Here we investigated the activation of caspase-2, an initiator caspase activated in response to DNA damage and supernumerary centrosomes. Of 7 HCMV strains tested, only strain AD169 activated caspase-2 in infected fibroblasts. Treatment with an ATM inhibitor or inactivation of PIDD or RAIDD inhibited caspase-2 activation, indicating that caspase-2 was activated by the PIDDosome. A set of chimeric HCMV strains was used to identify the genetic basis of this phenotype. Surprisingly, we found a single nucleotide polymorphism within the AD169 UL55 ORF, resulting in a D275Y amino acid exchange within glycoprotein B (gB), to be responsible for caspase-2 activation. As gB is an envelope glycoprotein required for fusion with host cell membranes, we tested whether gB(275Y) altered viral entry into fibroblasts. While entry of AD169 expressing gB(275D) proceeded slowly and could be blocked by a macropinocytosis inhibitor, entry of wild-type AD169 expressing gB(275Y) proceeded more rapidly, presumably by envelope fusion with the plasma membrane. Moreover, gB(275Y) caused the formation of syncytia with numerous centrosomes, suggesting that cell fusion triggered caspase-2 activation. These results suggest that gB variants with increased fusogenicity accelerate viral entry, cause cell fusion, and thereby compromise genome stability. They further suggest the ATM-PIDDosome-caspase-2 signaling axis alerts the cell of potentially dangerous cell fusion.



FEBS Letters ◽  
2014 ◽  
Vol 588 (6) ◽  
pp. 1044-1052 ◽  
Author(s):  
Vikash Singh ◽  
Gajendra Kumar Azad ◽  
Papita Mandal ◽  
M. Amarendar Reddy ◽  
Raghuvir S. Tomar


Blood ◽  
2005 ◽  
Vol 105 (9) ◽  
pp. 3686-3690 ◽  
Author(s):  
Paolo Salomoni ◽  
Rosa Bernardi ◽  
Stephan Bergmann ◽  
Austin Changou ◽  
Sara Tuttle ◽  
...  

AbstractThe promyelocytic leukemia (PML) gene, a tumor suppressor inactivated in acute promyelocytic leukemia (APL), regulates apoptosis induced by DNA damage. However, the molecular mechanisms by which PML modulates apoptosis following genotoxic stress are only partially elucidated. PML is essential for p53-dependent induction of programmed cell death upon γ-irradiation through PML-nuclear body (NB)–mediated control of p53 acetylation. Here, we show that PML selectively regulates proapoptotic transcription factors upon different types of DNA damage. We find that Pml inactivation protects fibroblasts from UV-induced apoptosis in a p53-independent manner. We demonstrate that c-Jun is required for UV-induced apoptosis and that PML is essential for both c-Jun transcriptional activation and DNA binding upon UV radiation. We find that PML physically interacts with c-Jun and that upon UV radiation the PML-NBs reorganize into novel nuclear microspeckled structures (UV-NBs), where PML and c-Jun dynamically accumulate. These data identify a novel PML-dependent pathway for c-Jun transcriptional activation and induction of apoptosis in response to DNA damage and shed new light on the role of PML in tumor suppression.



2021 ◽  
Author(s):  
Tasaduq Hussain Wani ◽  
Goutam Chowdhury ◽  
Anindita Chakrabarty

The anti-cancer drug YM155's primary mode of action is generation of reactive oxygen species, while survivin suppression and DNA damage are secondary effects.



2020 ◽  
Author(s):  
Megan R. Reed ◽  
Leena Maddukuri ◽  
Amit Ketkar ◽  
Stephanie D. Byrum ◽  
Maroof K. Zafar ◽  
...  

ABSTRACTAberrant expression of tryptophan 2,3-dioxygenase (TDO) is a determinant of malignancy and immune response in gliomas in part through kynurenine (KYN)-mediated activation of the aryl hydrocarbon receptor (AhR). In the current study, we investigated the hypothesis that TDO activation in gliomas has a broad impact upon genome maintenance - promoting tolerance of replication stress (RS) and repair of DNA damage. We report that inhibition of TDO activity attenuated recovery from hydroxyurea (HU)-induced RS and increased the genotoxic effects of bis-chloroethylnitrosourea (BCNU), as fork progress was impeded when TDO-deficient glioma cells were treated with BCNU. Activation of the Chk1 arm of the replication stress response (RSR) was reduced when TDO activity was blocked prior to treatment with BCNU, whereas phosphorylation of serine 33 (pS33) on replication protein A (RPA) was enhanced – indicative of increased fork collapse. Restoration of KYN levels protected against some replication-associated effects of BCNU. Inhibition of TDO activity had a strong anti-proliferative effect on glioma-derived cells – enhancing the cytotoxic effects of BCNU. Analysis of results obtained using quantitative proteomics revealed TDO-dependent changes in several signaling pathways – including down-regulation of DNA repair factors and sirtuin signaling. Consistent with these observations, inhibition of TDO diminished SIRT7 recruitment to chromatin, which increased histone H3K18 acetylation – a key mark involved in 53BP1 recruitment to sites of DNA damage. Cells lacking TDO activity exhibited defective recruitment of 53BP1 to gH2AX foci, which corresponded with delayed repair of BCNU-induced DNA breaks. Addition of exogenous KYN increased the rate of break repair. The discovery that TDO activity modulates sensitivity to DNA damage by fueling SIRT7/53BP1 localization to chromatin and repair of BCNU-induced DNA damage highlights the potential for tumor-specific metabolic changes to influence genome stability and may have implications for glioma biology and treatment strategies.



Sign in / Sign up

Export Citation Format

Share Document