scholarly journals The impact of Hurricane Michael on longleaf pine habitats in Florida

2019 ◽  
Author(s):  
Nicole E. Zampieri ◽  
Stephanie Pau ◽  
Daniel K. Okamoto

AbstractThe longleaf pine (Pinus palustris) ecosystem of the North American Coastal Plain (NACP) is a global biodiversity hotspot. Disturbances such as tropical storms play an integral role in ecosystem maintenance in these systems. However, altered disturbance regimes as a result of climate change may be outside the historical threshold of tolerance. Hurricane Michael impacted the Florida panhandle as a Category 5 storm on October 10th, 2018. In this study, we estimate the extent of Florida longleaf habitat that was directly impacted by Hurricane Michael. We then quantify the impact of Hurricane Michael on tree density and size structure using a Before-After study design at four sites (two wet flatwood and two upland pine communities). Finally, we identify the most common type of tree damage at each site and community type. We found that 39% of the total remaining extent of longleaf pine habitat was affected by the storm in Florida alone. Tree mortality ranged from 1.3% at the site furthest from the storm center to 88.7% at the site closest. Most of this mortality was in mature sized trees (92% mortality), upon which much of the biodiversity in this habitat depends. As the frequency and intensity of extreme events increases, management plans that mitigate for climate change impacts need to account for large-scale stochastic mortality events in order to effectively preserve critical habitats.

2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


2019 ◽  
Vol 49 (1) ◽  
pp. 211-219
Author(s):  
Heather Moylett ◽  
Elsa Youngsteadt ◽  
Clyde Sorenson

Abstract Prescribed burning is a common silvicultural practice used in the management of longleaf pine (Pinus palustris Mill., Pinales: Pinaceae) savannas to reduce hardwood encroachment and ground cover and to maintain biodiversity. We investigated the response of the native bee community (Hymenoptera: Apoidea: Anthophila) in the Sandhills of North Carolina to prescribed burning on a 3-yr rotation over two consecutive years (2012 and 2013). We deployed bee bowl traps in sites that had been burned the year of sampling, 1 yr before, 2 yr before, and in unburned controls. In total, 2,276 bees of 109 species were captured. Bee abundance declined with time since fire, with 2.3 times more bees captured in the most recently burned sites than in unburned controls. Bee diversity also declined with time since fire, with 2.1 times more species captured in the most recently burned sites than in controls. Bee community composition also responded to fire; we present evidence that this response was mediated in part by the effect of fire on the amount of bare ground and canopy cover. Bees nesting aboveground were unaffected by fire, contrary to our expectation that fire would destroy the wood and stems in which these species nest. Our results indicate that prescribed burning is a silvicultural practice consistent with pollinator conservation in longleaf pine ecosystems of the North Carolina sandhills.


2015 ◽  
Vol 28 (5) ◽  
pp. 1806-1823 ◽  
Author(s):  
Angela J. Colbert ◽  
Brian J. Soden ◽  
Ben P. Kirtman

Abstract The impact of natural and anthropogenic climate change on tropical cyclone (TC) tracks in the western North Pacific (WNP) is examined using a beta and advection model (BAM) to isolate the influence of changes in the large-scale steering flow from changes in genesis location. The BAM captures many of the observed changes in TC tracks due to El Niño–Southern Oscillation (ENSO), while little change is noted for the Pacific decadal oscillation and all-India monsoon rainfall in either observations or BAM simulations. Analysis with the BAM suggests that the observed shifts in the average track between the phases of ENSO are primarily due to changes in the large-scale steering flow, with changes in genesis location playing a secondary role. Potential changes in TC tracks over the WNP due to anthropogenic climate change are also assessed. Ensemble mean projections are downscaled from 17 CMIP3 models and 26 CMIP5 models. Statistically significant decreases [~(4%–6%)] in westward moving TCs and increases [~(5%–7%)] in recurving ocean TCs are found. These correspond to projected decreases of 3–5 TCs per decade over the Philippines and increases of 1–3 TCs per decade over the central WNP. The projected changes are primarily caused by a reduction in the easterlies. This slows the storm movement, allowing more time for the beta drift to carry the storm northward and recurve. A previous study found similar results in the North Atlantic. Taken together, these results suggest that a weakening of the mean atmospheric circulation in response to anthropogenic warming will lead to fewer landfalling storms over the North Atlantic and WNP.


2021 ◽  
Author(s):  
ALBA DE LA VARA ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

Abstract In this work we use a regional ocean-atmosphere coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere-ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP is a well suited location for this study as high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the 21st century (2070-2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model shows the added value of regionalization in terms of higher resolution over the land and ocean.


2014 ◽  
Vol 6 (3) ◽  
pp. 358-378 ◽  
Author(s):  
Jinxia Wang ◽  
Jikun Huang ◽  
Lijuan Zhang ◽  
Yumin Li

Purpose – The purpose of this paper is to explore the impacts of climate change on crop net revenue by region. Particularly, the authors focus on the impact differences between north and south regions. Design/methodology/approach – The authors applied the Ricardian approach which assumes that each farmer wishes to maximize revenue subject to the exogenous conditions of their farm. The climate data are based on actual measurements in 753 national meteorological stations and the socio-economic data covers 8,405 farms across 28 provinces in China. Findings – On average, the rise of annual temperature will hurt farms both in the north or south. The impacts of climate change on both precipitation and temperatures have different seasonal impacts on producers in the north and the south of China. As a consequence, the impact on net farm revenues varies with farms in the north and the south being adversely affected (to different degrees) by a rise in the temperature, but both benefiting from an anticipated increase in rainfall. The results also reveal that irrigation is one key adaption measure to dealing with climate change. Whether in the north or south of China, increasing temperature is beneficial to irrigated farms, while for rainfed farms, higher temperature will result in a reduction in net revenues. The results also reveal that farms in the north are more vulnerable to temperature and precipitation variation than that in the south. Irrigated farms in the south are more vulnerable to precipitation variation than that in the north; but rainfed farms in the north are more vulnerable to precipitation variation than that in the south. Originality/value – Applying empirical analysis to identify the differences of climate change impacts between north and south regions will help policy makers to design reasonable adaptation policies for various regions.


2019 ◽  
Author(s):  
Nabil El Moçayd ◽  
Suchul Kang ◽  
Elfatih A. B. Eltahir

Abstract. The hydrology of Morocco is characterized by a significant spatial variability. Precipitation follows a sharp gradient decreasing from the North to the South. In order to redistribute water, a project is proposed to transfer 860 million m3 per year from the wet north to the arid southern regions, {Water Highway}. The present study aims to address the viability of the project including the effects of climate change in the watersheds located in the North. We perform Regional Climate Model (RCMs) simulations over the study region using boundary conditions from five different global circulation models (GCMs) and following two emissions scenarios RCP4.5 (with mitigation) and RCP8.5 (business as usual). The impact on precipitation is assessed and the decrease of available water quantity is estimated. Under RCP8.5 the project is likely unfeasible. However, under the RCP4.5 a rescaled version of this project may be feasible depending on how much water is allocated to satisfy the local water demand.


2020 ◽  
Vol 24 (3) ◽  
pp. 1467-1483 ◽  
Author(s):  
Nabil El Moçayd ◽  
Suchul Kang ◽  
Elfatih A. B. Eltahir

Abstract. The hydrology of Morocco is characterized by significant spatial variability. Precipitation follows a sharp gradient, decreasing from the north to the south. In order to redistribute the available water, a project has been proposed to transfer 860×106 m3 yr−1 from the wet north to the arid southern regions, namely the “Water Highway” project. The present study aims to address the viability of the project after accounting for the impacts of climate change in the watersheds located in the north. We perform regional climate model (RCM) simulations over the study region using boundary conditions from five different global circulation models (GCMs) and assuming two different emissions scenarios – RCP4.5 (with mitigation) and RCP8.5 (business as usual). The impact on precipitation and temperature are assessed, and the decrease in the available water quantity is estimated. Under RCP8.5, the project is likely not feasible. However, under the RCP4.5, a rescaled version of this project may be feasible depending on how much water is allocated to satisfy the local water demand in the north.


2016 ◽  
Vol 46 (4) ◽  
pp. 563-578
Author(s):  
John L. Brooke

Subsequent to Harper’s review essay centered on Brooke’s Climate Change and the Course of Global History: A Rough Journey, Brooke concedes that he could have focused more attention on the problem of the Malthusian trap. He stresses, nevertheless, that his reservations regarding the concept of Malthusian crises in pre-industrial societies are well placed, given the concept’s prominence in the large-scale environmental histories written during the past several decades. Turning to the impact of climate change in late classical antiquity, Brooke discusses established and new evidence for increasing, sometimes catastrophic, precipitation from the Mediterranean area into central Asia after a.d. 500 and after 1250, as a result of shifts toward the negative mode of the North Atlantic Oscillation. He also surveys the evidence for emerging arguments that this cooling-driven precipitation may have triggered outbreaks of bubonic plague in Central Asia.


2019 ◽  
Vol 11 (2) ◽  
pp. 291-305 ◽  
Author(s):  
Micah J. Hewer ◽  
William A. Gough

Abstract Because of the perceived weather sensitivity of park visitation in Ontario, Canada, several previous assessments have examined the impact of climate change. However, these assessments have predominantly been based on modeling approaches (regression analysis). The current study uses a multiyear temporal climate-analog approach to reassess the impact of climate change on visitation to Pinery Provincial Park in southwestern Ontario based on the observed effects of historical climatic anomalies on park visitation from 2000 to 2016. Consideration was also given to major events such as the North American terror attacks on 11 September 2001 and the confounding effect that events such as this may have had on the results. There were no statistically significant relationships (at the 95% confidence level) between seasonal climatic anomalies and park visitation in Ontario during the winter or spring seasons. There was a weak statistical relationship between anomalously warm summer seasons and park visitation, when compared to summer seasons with climatically normal temperatures; however, the presence of nonclimatic variables may have confounded these results, producing a false positive. Autumn-season park visitation was most sensitive to climatic anomalies, with the warmest temperatures causing visitation to increase by 37%, the wettest conditions causing visitation to decrease by 11%, and the driest conditions resulting in a 24% increase. These observed seasonal temperature anomalies represent temporal climate analogs for projected climate change across the span of the twenty-first century. Thus, the results of this study suggest that previous assessments may have overestimated the positive impacts of projected climate change on park visitation in this region.


2013 ◽  
Vol 4 (1) ◽  
pp. 17-37 ◽  
Author(s):  
Haregewoin Haile Chernet ◽  
Knut Alfredsen ◽  
Ånund Killingtveit

Hydropower is the most important renewable energy source for electricity in Norway. However, it is the most vulnerable resource to climate change. Despite the importance of hydropower and its vulnerability to climate change, many studies have been mostly concerned with large-scale resources assessment. This study aims to address the climate change impacts on the scale of a single hydropower system in Norway. The impact studies are based on a combination of hydrological model and a hydropower simulation model driven by scenarios from the Atmospheric-Ocean General Circulation Model (AOGCM). These climate scenarios were used for driving the HBV (Hydrologiska Byråns Vattenbalansavdelning) hydrological model to provide inflow scenarios for the hydropower study. The nMAG hydropower simulation model was used to simulate the hydropower system for the control and scenario period and to investigate future changes in power production. In general, the projections indicate an average increase of 11–17% in annual inflow to the system, earlier peaks and a larger increase in spring. The hydropower simulation results show an increase in energy generation of 9–20% under the current reservoir operation strategies.


Sign in / Sign up

Export Citation Format

Share Document