scholarly journals Unraveling the Complexity of Amyloid Polymorphism Using Gold Nanoparticles and Cryo-EM

2019 ◽  
Author(s):  
Urszula Cendrowska ◽  
Paulo Jacob Silva ◽  
Nadine Ait-Bouziad ◽  
Marie Müller ◽  
Zekiye Pelin Guven ◽  
...  

AbstractThe misfolding and self-assembly of proteins into β-sheet-rich amyloid fibrils of various structures and morphologies is a hallmark of several neurodegenerative and systemic diseases. Increasing evidence suggests that amyloid polymorphism gives rise to different strains of amyloids with distinct toxicity and pathology-spreading properties. Validating this hypothesis is challenging due to a lack of tools and methods that allow for the direct characterization of amyloid polymorphism in hydrated and complex biological samples. Here, we report on the use of 11-mercapto-1-undecanesulfonate-coated gold nanoparticles (NPs) to label the edges of synthetic, recombinant and native amyloid fibrils to assess amyloid morphological polymorphism using cryogenic transmission electron microscopy (cryo-EM). The fibrils studied were derived from amyloid proteins involved in disorders of the central nervous system (amyloid-β, tau, α-synuclein) and in systemic amyloidosis (a fragment of an immunoglobulin λ light chain). The labeling efficiency enabled imaging and characterization of amyloid fibrils of different morphologies under hydrated conditions using cryo-EM. These NPs allowed for the visualization of morphological features that are not directly observed using standard imaging techniques, including TEM with use of the negative stain or cryo-EM imaging. We also demonstrate the use of these NPs to label native paired helical filaments (PHFs) from the postmortem brain of an Alzheimer’s disease patient, as well as amyloid fibrils extracted from the heart tissue of a patient suffering from systemic amyloid light-chain (AL) amyloidosis. Analysis of the cryo-EM images of amyloids decorated with NPs shows exceptional homogeneity across the fibrils derived from human tissue in comparison to fibrils aggregated in vitro. The use of these NPs enabled us to gain novel insight into the structural features that distinguish amyloid fibrils formed in vivo from those formed in cell-free in vitro systems. Our findings demonstrate that these NPs represent a powerful tool for rapid imaging and profiling of amyloid morphological polymorphism in different types of samples, including those derived from complex biological aggregates found in human tissue and animal models of amyloid diseases. These advances should not only facilitate the profiling and characterization of amyloids for structural studies by cryo-EM but also pave the way to elucidate the structural basis of amyloid strains and toxicity and possibly the correlation between the pathological and clinical heterogeneity of amyloid diseases.

2020 ◽  
Vol 117 (12) ◽  
pp. 6866-6874 ◽  
Author(s):  
Urszula Cendrowska ◽  
Paulo Jacob Silva ◽  
Nadine Ait-Bouziad ◽  
Marie Müller ◽  
Zekiye Pelin Guven ◽  
...  

Increasing evidence suggests that amyloid polymorphism gives rise to different strains of amyloids with distinct toxicities and pathology-spreading properties. Validating this hypothesis is challenging due to a lack of tools and methods that allow for the direct characterization of amyloid polymorphism in hydrated and complex biological samples. Here, we report on the development of 11-mercapto-1-undecanesulfonate-coated gold nanoparticles (NPs) that efficiently label the edges of synthetic, recombinant, and native amyloid fibrils derived from different amyloidogenic proteins. We demonstrate that these NPs represent powerful tools for assessing amyloid morphological polymorphism, using cryogenic transmission electron microscopy (cryo-EM). The NPs allowed for the visualization of morphological features that are not directly observed using standard imaging techniques, including transmission electron microscopy with use of the negative stain or cryo-EM imaging. The use of these NPs to label native paired helical filaments (PHFs) from the postmortem brain of a patient with Alzheimer’s disease, as well as amyloid fibrils extracted from the heart tissue of a patient suffering from systemic amyloid light-chain amyloidosis, revealed a high degree of homogeneity across the fibrils derived from human tissue in comparison with fibrils aggregated in vitro. These findings are consistent with, and strongly support, the emerging view that the physiologic milieu is a key determinant of amyloid fibril strains. Together, these advances should not only facilitate the profiling and characterization of amyloids for structural studies by cryo-EM, but also pave the way to elucidate the structural basis of amyloid strains and toxicity, and possibly the correlation between the pathological and clinical heterogeneity of amyloid diseases.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3571
Author(s):  
Gareth J. Morgan

Inhibition of amyloid fibril formation could benefit patients with systemic amyloidosis. In this group of diseases, deposition of amyloid fibrils derived from normally soluble proteins leads to progressive tissue damage and organ failure. Amyloid formation is a complex process, where several individual steps could be targeted. Several small molecules have been proposed as inhibitors of amyloid formation. However, the exact mechanism of action for a molecule is often not known, which impedes medicinal chemistry efforts to develop more potent molecules. Furthermore, commonly used assays are prone to artifacts that must be controlled for. Here, potential mechanisms by which small molecules could inhibit aggregation of immunoglobulin light-chain dimers, the precursor proteins for amyloid light-chain (AL) amyloidosis, are studied in assays that recapitulate different aspects of amyloidogenesis in vitro. One molecule reduced unfolding-coupled proteolysis of light chains, but no molecules inhibited aggregation of light chains or disrupted pre-formed amyloid fibrils. This work demonstrates the challenges associated with drug development for amyloidosis, but also highlights the potential to combine therapies that target different aspects of amyloidosis.


2021 ◽  
Vol 49 (2) ◽  
pp. 977-985
Author(s):  
Marcus Fändrich ◽  
Matthias Schmidt

Systemic amyloidosis is defined as a protein misfolding disease in which the amyloid is not necessarily deposited within the same organ that produces the fibril precursor protein. There are different types of systemic amyloidosis, depending on the protein constructing the fibrils. This review will focus on recent advances made in the understanding of the structural basis of three major forms of systemic amyloidosis: systemic AA, AL and ATTR amyloidosis. The three diseases arise from the misfolding of serum amyloid A protein, immunoglobulin light chains or transthyretin. The presented advances in understanding were enabled by recent progress in the methodology available to study amyloid structures and protein misfolding, in particular concerning cryo-electron microscopy (cryo-EM) and nuclear magnetic resonance (NMR) spectroscopy. An important observation made with these techniques is that the structures of previously described in vitro formed amyloid fibrils did not correlate with the structures of amyloid fibrils extracted from diseased tissue, and that in vitro fibrils were typically more protease sensitive. It is thus possible that ex vivo fibrils were selected in vivo by their proteolytic stability.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Marius Kollmer ◽  
William Close ◽  
Leonie Funk ◽  
Jay Rasmussen ◽  
Aref Bsoul ◽  
...  

Abstract The formation of Aβ amyloid fibrils is a neuropathological hallmark of Alzheimer’s disease and cerebral amyloid angiopathy. However, the structure of Aβ amyloid fibrils from brain tissue is poorly understood. Here we report the purification of Aβ amyloid fibrils from meningeal Alzheimer’s brain tissue and their structural analysis with cryo-electron microscopy. We show that these fibrils are polymorphic but consist of similarly structured protofilaments. Brain derived Aβ amyloid fibrils are right-hand twisted and their peptide fold differs sharply from previously analyzed Aβ fibrils that were formed in vitro. These data underscore the importance to use patient-derived amyloid fibrils when investigating the structural basis of the disease.


2011 ◽  
Vol 29 (6) ◽  
pp. 674-681 ◽  
Author(s):  
Jennifer H. Pinney ◽  
Helen J. Lachmann ◽  
Loveleen Bansi ◽  
Ashutosh D. Wechalekar ◽  
Janet A. Gilbertson ◽  
...  

Purpose Chemotherapy in AL (primary or light chain) amyloidosis is associated with improved survival, but its effect on renal outcome has not been examined systematically. The purpose of this study was to evaluate the effect of chemotherapy on clinical outcome among patients with renal AL amyloidosis. Patients and Methods We evaluated factors influencing survival among 923 patients with renal AL amyloidosis observed during a 21-year period, including 221 patients who became dialysis dependent. Factors associated with renal outcome were analyzed, including serum free light chain (FLC) response to chemotherapy using a simple subtraction formula applicable to all stages of chronic kidney disease. Patient survival and graft survival were analyzed in 21 renal transplantation recipients. Results Median survival from diagnosis for the whole cohort was 35.2 months. Magnitude of FLC response with chemotherapy was strongly and independently associated with overall survival (P < .001) and renal outcome. Evaluable patients achieving more than 90% FLC response had a significantly higher rate of renal responses and lower rate of renal progression compared with patients achieving a 50% to 90% response, whose renal outcomes were, in turn, better than patients achieving less than 50% FLC response (P < .001). Median survival from dialysis dependence was 39.0 months, and median survival from renal transplantation was 89.0 months. Conclusion Renal outcome and overall outcome in AL amyloidosis are strongly associated with FLC response to chemotherapy and are best among patients achieving more than 90% suppression of the amyloidogenic monoclonal component. Survival on dialysis was substantially superior to that previously reported, and renal transplantation should be considered in selected patients with AL amyloidosis with end-stage renal disease.


2008 ◽  
Vol 4 (3) ◽  
pp. 421-432 ◽  
Author(s):  
Priscilla Wilkins Stevens ◽  
Rosemarie Raffen ◽  
Deborah K. Hanson ◽  
Ya-Li Deng ◽  
Maria Berrios-Hammond ◽  
...  

2019 ◽  
Author(s):  
Ying Sun ◽  
Jian Sun ◽  
Wei Sun ◽  
Junyi Pang ◽  
Yubing Wen ◽  
...  

Abstract Background Amyloidosis, a disease caused by abnormal protein deposition in tissues, is classified according to the protein precursor that form amyloid fibrils. Diagnosis of amyloidosis is type-specific as the identification of amyloid protein determines the following treatment. However, around a quarter of amyloidosis cases cannot be accurately subtyped by most commonly used immunohistochemistry (IHC). In order to obtain precise diagnosis, our study is focusing on another protein identification methods, laser microdissection and mass spectrometry (LDMS). Methods 20 cases of Amyloid Light-chain (AL) amyloidosis without further subtype were included. IHC and LDMS were used to detect light chains on formalin-fixed paraffin-embedded (FFPE) tissues from renal biopsy. Results 100% consistence between positive IHC and LDMS results were observed, however, chances of subtyping using LDMS is increased to 94% compared to IHC which is only 76%. Conclusion LDMS is a valuable tool in regard to subtyping amyloidosis.


Medicina ◽  
2021 ◽  
Vol 57 (9) ◽  
pp. 916
Author(s):  
Paola Rognoni ◽  
Giulia Mazzini ◽  
Serena Caminito ◽  
Giovanni Palladini ◽  
Francesca Lavatelli

Amyloidoses are characterized by aggregation of proteins into highly ordered amyloid fibrils, which deposit in the extracellular space of tissues, leading to organ dysfunction. In AL (amyloid light chain) amyloidosis, the most common form in Western countries, the amyloidogenic precursor is a misfolding-prone immunoglobulin light chain (LC), which, in the systemic form, is produced in excess by a plasma cell clone and transported to target organs though blood. Due to the primary role that proteins play in the pathogenesis of amyloidoses, mass spectrometry (MS)-based proteomic studies have gained an established position in the clinical management and research of these diseases. In AL amyloidosis, in particular, proteomics has provided important contributions for characterizing the precursor light chain, the composition of the amyloid deposits and the mechanisms of proteotoxicity in target organ cells and experimental models of disease. This review will provide an overview of the major achievements of proteomic studies in AL amyloidosis, with a presentation of the most recent acquisitions and a critical discussion of open issues and ongoing trends.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3100-3100 ◽  
Author(s):  
Ken Flanagan ◽  
Muntasir M Majumder ◽  
Romika Kumari ◽  
Juho Miettinen ◽  
Ana Slipicevic ◽  
...  

Background: Immunoglobulin light-chain (AL) amyloidosis is a rare disease caused by plasma cell secretion of misfolded light chains that assemble as amyloid fibrils and deposit on vital organs including the heart and kidneys, causing organ dysfunction. Plasma cell directed therapeutics, aimed at preferentially eliminating the clonal population of amyloidogenic cells in bone marrow are expected to reduce production of toxic light chain and alleviate deposition of amyloid thereby restoring healthy organ function. Melphalan flufenamide ethyl ester, melflufen, is a peptidase potentiated alkylating agent with potent toxicity in myeloma cells. Melflufen is highly lipophilic, permitting rapid cellular uptake, and is subsequently enzymatically cleaved by aminopeptidases within cells resulting in augmented intracellular concentrations of toxic molecules, providing a more targeted and localized treatment. Previous data demonstrating multiple myeloma plasma cell sensitivity for melflufen suggests that the drug might be useful to directly eliminate amyloidogenic plasma cells, thereby reducing the amyloid load in patients. Furthermore, the increased intracellular concentrations of melflufen in myeloma cells indicates a potential reduction in systemic toxicity in patients, an important factor in the fragile amyloidosis patient population. To assess potential efficacy in amyloidosis patients and to explore the mechanism of action, we examined effects of melflufen on amyloidogenic plasma cells invitro and invivo. Methods: Cellular toxicity and apoptosis were measured in response to either melflufen or melphalan in multiple malignant human plasma cell lines, including the amyloidosis patient derived light chain secreting ALMC-1 and ALMC-2 cells, as well as primary bone marrow cells from AL amyloidosis patients, using annexin V and live/dead cell staining by multicolor flow cytometry, and measurement of cleaved caspases. Lambda light chain was measured in supernatant by ELISA, and intracellular levels were detected by flow cytometry. To assess efficacy of melflufen in vivo, the light chain secreting human myeloma cell line, JJN3, was transduced with luciferase and adoptively transferred into NSG mice. Cell death in response to melflufen or melphalan was measured by in vivo bioluminescence, and serum light chain was monitored. Results: Melflufen demonstrated increased potency against multiple myeloma cell lines compared to melphalan, inducing malignant plasma cell death at lower doses on established light chain secreting plasma cell lines. While ALMC-1 cells were sensitive to both melphalan and melflufen, the IC50 for melphalan at 960 nM was approximately 3-fold higher than melflufen (334 nM). However, ALMC-2 cells were relatively insensitive to melphalan (12600 nM), but maintained a 100-fold increase in sensitivity to melflufen (121 nM). Furthermore, while 40% of primary CD138+ plasma cells from patients with diagnosed AL amyloidosis responded to melflufen treatment in vitro, only 20% responded to melphalan with consistently superior IC50 values for melflufen (Figure 1). Light chain secreting cell lines and AL amyloidosis patient samples were further analyzed by single cell sequencing. We further examined differential effects on apoptosis and the unfolded protein response in vitro in response to either melflufen or melphalan. This is of particular interest in amyloidosis, where malignant antibody producing plasma cells possess an increased requirement for mechanisms to cope with the amplified load of unfolded protein and associated ER stress. As AL amyloidosis is ultimately a disease mediated by secretion of toxic immunoglobulin, we assessed the effects of melflufen on the production of light chain invitro, measuring a decrease in production of light chain in response to melflufen treatment. Finally, we took advantage of a recently described adoptive transfer mouse model of amyloidosis to assess the efficacy of melflufen and melphalan in eliminating amyloidogenic clones and reducing the levels of toxic serum light chain in vivo. Conclusions: These findings provide evidence that melflufen mediated toxicity, previously described in myeloma cells, extends to amyloidogenic plasma cells and further affects the ability of these cells to produce and secrete toxic light chain. This data supports the rationale for the evaluation of melflufen in patients with AL amyloidosis. Figure 1 Disclosures Flanagan: Oncopeptides AB: Employment. Slipicevic:Oncopeptides AB: Employment. Holstein:Celgene: Consultancy; Takeda: Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; GSK: Consultancy; Genentech: Membership on an entity's Board of Directors or advisory committees; Sorrento: Consultancy. Lehmann:Oncopeptides AB: Employment. Nupponen:Oncopeptides AB: Employment. Heckman:Celgene: Research Funding; Novartis: Research Funding; Oncopeptides: Research Funding; Orion Pharma: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document