scholarly journals sRNAanno --- a database repository of uniformly-annotated small RNAs in plants

2019 ◽  
Author(s):  
Chengjie Chen ◽  
Junting Feng ◽  
Bo Liu ◽  
Jiawei Li ◽  
Lei Feng ◽  
...  

AbstractSmall RNAs (sRNAs) are essential regulatory molecules, including three mayor classes in plants, microRNAs (miRNAs), phased small interfering RNAs (phased siRNAs or phasiRNAs), and heterochromatic siRNAs (hc-siRNAs). Except miRNAs, the other two classes are not well-annotated and collected in public databases for most sequenced plant genomes. We performed comprehensive sRNA annotation for 138 plant species, which have fully sequenced genomes and public next-generation-sequencing (NGS) sRNA data available. The results are available via an online repository called sRNAanno (www.plantsRNAs.org). Compared to plant miRNAs deposited in miRBase, we obtained much more miRNAs, which are more complete and reliable because of consistent and high-stringent criteria used in our miRNA annotation. sRNAanno also provides free access to genomic information for >16,000 PHAS loci and >21,000,000 hc-siRNA loci annotated from these 138 plants. On the basis of Integrative Genomics Viewer (IGV), we developed a visualization tool for browsing NGS sRNA data (IGV-sRNA), which have been integrated a series of new functions compatible to specific sRNA features. To make sRNA annotation an easy task, sRNAanno also provides free service of sRNA annotation to the community. In summary, sRNAanno and IGV-sRNA are great resources to facilitate the genomic and genetic research of plant small RNAs.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Chengjie Chen ◽  
Jiawei Li ◽  
Junting Feng ◽  
Bo Liu ◽  
Lei Feng ◽  
...  

AbstractSmall RNAs (sRNAs) are essential regulatory molecules, and there are three major sRNA classes in plants: microRNAs (miRNAs), phased small interfering RNAs (phased siRNAs or phasiRNAs), and heterochromatic siRNAs (hc-siRNAs). Excluding miRNAs, the other two classes are not well annotated or available in public databases for most sequenced plant genomes. We performed a comprehensive sRNA annotation of 143 plant species that have fully sequenced genomes and next-generation sequencing sRNA data publicly available. The results are available via an online repository called sRNAanno (www.plantsRNAs.org). Compared with other public plant sRNA databases, we obtained was much more miRNA annotations, which are more complete and reliable because of the consistent and highly stringent criteria used in our miRNA annotations. sRNAanno also provides free access to genomic information for >22,721 PHAS loci and >22 million hc-siRNA loci annotated from these 143 plant species. Both miRNA and PHAS loci can be easily browsed to view their main features, and a collection of archetypal trans-acting siRNA 3 (TAS3) genes were annotated separately for quick access. To facilitate the ease of sRNA annotation, sRNAanno provides free service for sRNA annotations to the community. In summary, the sRNAanno database is a great resource to facilitate genomic and genetic research on plant small RNAs.


2021 ◽  
Vol 22 (5) ◽  
pp. 2737
Author(s):  
Daisy Sproviero ◽  
Stella Gagliardi ◽  
Susanna Zucca ◽  
Maddalena Arigoni ◽  
Marta Giannini ◽  
...  

Identifying biomarkers is essential for early diagnosis of neurodegenerative diseases (NDs). Large (LEVs) and small extracellular vesicles (SEVs) are extracellular vesicles (EVs) of different sizes and biological functions transported in blood and they may be valid biomarkers for NDs. The aim of our study was to investigate common and different miRNA signatures in plasma derived LEVs and SEVs of Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic Lateral Sclerosis (ALS) and Fronto-Temporal Dementia (FTD) patients. LEVs and SEVs were isolated from plasma of patients and healthy volunteers (CTR) by filtration and differential centrifugation and RNA was extracted. Small RNAs libraries were carried out by Next Generation Sequencing (NGS). MiRNAs discriminate all NDs diseases from CTRs and they can provide a signature for each NDs. Common enriched pathways for SEVs were instead linked to ubiquitin mediated proteolysis and Toll-like receptor signaling pathways and for LEVs to neurotrophin signaling and Glycosphingolipid biosynthesis pathway. LEVs and SEVs are involved in different pathways and this might give a specificity to their role in the spreading of the disease. The study of common and different miRNAs transported by LEVs and SEVs can be of great interest for biomarker discovery and for pathogenesis studies in neurodegeneration.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Anikó Meijer ◽  
Tim De Meyer ◽  
Klaas Vandepoele ◽  
Tina Kyndt

Abstract Background Small RNAs (sRNAs) regulate numerous plant processes directly related to yield, such as disease resistance and plant growth. To exploit this yield-regulating potential of sRNAs, the sRNA profile of one of the world’s most important staple crops – rice – was investigated throughout plant development using next-generation sequencing. Results Root and leaves were investigated at both the vegetative and generative phase, and early-life sRNA expression was characterized in the embryo and endosperm. This led to the identification of 49,505 novel sRNAs and 5581 tRNA-derived sRNAs (tsRNAs). In all tissues, 24 nt small interfering RNAs (siRNAs) were highly expressed and associated with euchromatic, but not heterochromatic transposable elements. Twenty-one nt siRNAs deriving from genic regions in the endosperm were exceptionally highly expressed, mimicking previously reported expression levels of 24 nt siRNAs in younger endosperm samples. In rice embryos, sRNA content was highly diverse while tsRNAs were underrepresented, possibly due to snoRNA activity. Publicly available mRNA expression and DNA methylation profiles were used to identify putative siRNA targets in embryo and endosperm. These include multiple genes related to the plant hormones gibberellic acid and ethylene, and to seed phytoalexin and iron content. Conclusions This work introduces multiple sRNAs as potential regulators of rice yield and quality, identifying them as possible targets for the continuous search to optimize rice production.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lia Baron ◽  
Shimshi Atar ◽  
Hadas Zur ◽  
Modi Roopin ◽  
Eli Goz ◽  
...  

AbstractViral genomes not only code the protein content, but also include silent, overlapping codes which are important to the regulation of the viral life cycle and affect its evolution. Due to the high density of these codes, their non-modular nature and the complex intracellular processes they encode, the ability of current approaches to decipher them is very limited. We describe the first computational-experimental pipeline for studying the effects of viral silent and non-silent information on its fitness. The pipeline was implemented to study the Porcine Circovirus type 2 (PCV2), the shortest known eukaryotic virus, and includes the following steps: (1) Based on the analyses of 2100 variants of PCV, suspected silent codes were inferred. (2) Five hundred variants of the PCV2 were designed to include various ‘smart’ silent mutations. (3) Using state of the art synthetic biology approaches, the genomes of these five hundred variants were generated. (4) Competition experiments between the variants were performed in Porcine kidney-15 (PK15) cell-lines. (5) The variant titers were analyzed based on novel next-generation sequencing (NGS) experiments. (6) The features related to the titer of the variants were inferred and their analyses enabled detection of various novel silent functional sequence and structural motifs. Furthermore, we demonstrate that 50 of the silent variants exhibit higher fitness than the wildtype in the analyzed conditions.


2017 ◽  
Vol 100 (3) ◽  
pp. 721-731 ◽  
Author(s):  
Dominic Lambert ◽  
Arthur Pightling ◽  
Emma Griffiths ◽  
Gary Van Domselaar ◽  
Peter Evans ◽  
...  

Abstract The application of new data streams generated from next-generation sequencing (NGS) has been demonstrated for food microbiology, pathogen identification, and illness outbreak detection. The establishment of best practices for data integrity,reproducibility, and traceability will ensure reliable, auditable, and transparent processes underlying food microbiology risk management decisions. We outline general principles to guide the use of NGS data in support of microbiological food safety. Regulatory authorities across intra- and internationaljurisdictions can leverage this effort to promote the reliability, consistency, and transparency of processes used in the derivation of genomic information for regulatory food safety purposes, and to facilitate interactions and the transfer of information in the interest of public health.


2020 ◽  
Vol 9 (8) ◽  
pp. 2633 ◽  
Author(s):  
Alain Calender ◽  
Thomas Weichhart ◽  
Dominique Valeyre ◽  
Yves Pacheco

Sarcoidosis is a complex disease that belongs to the vast group of autoinflammatory disorders, but the etiological mechanisms of which are not known. At the crosstalk of environmental, infectious, and genetic factors, sarcoidosis is a multifactorial disease that requires a multidisciplinary approach for which genetic research, in particular, next generation sequencing (NGS) tools, has made it possible to identify new pathways and propose mechanistic hypotheses. Codified treatments for the disease cannot always respond to the most progressive forms and the identification of new genetic and metabolic tracks is a challenge for the future management of the most severe patients. Here, we review the current knowledge regarding the genes identified by both genome wide association studies (GWAS) and whole exome sequencing (WES), as well the connection of these pathways with the current research on sarcoidosis immune-related disorders.


Sign in / Sign up

Export Citation Format

Share Document