scholarly journals sRNAanno—a database repository of uniformly annotated small RNAs in plants

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Chengjie Chen ◽  
Jiawei Li ◽  
Junting Feng ◽  
Bo Liu ◽  
Lei Feng ◽  
...  

AbstractSmall RNAs (sRNAs) are essential regulatory molecules, and there are three major sRNA classes in plants: microRNAs (miRNAs), phased small interfering RNAs (phased siRNAs or phasiRNAs), and heterochromatic siRNAs (hc-siRNAs). Excluding miRNAs, the other two classes are not well annotated or available in public databases for most sequenced plant genomes. We performed a comprehensive sRNA annotation of 143 plant species that have fully sequenced genomes and next-generation sequencing sRNA data publicly available. The results are available via an online repository called sRNAanno (www.plantsRNAs.org). Compared with other public plant sRNA databases, we obtained was much more miRNA annotations, which are more complete and reliable because of the consistent and highly stringent criteria used in our miRNA annotations. sRNAanno also provides free access to genomic information for >22,721 PHAS loci and >22 million hc-siRNA loci annotated from these 143 plant species. Both miRNA and PHAS loci can be easily browsed to view their main features, and a collection of archetypal trans-acting siRNA 3 (TAS3) genes were annotated separately for quick access. To facilitate the ease of sRNA annotation, sRNAanno provides free service for sRNA annotations to the community. In summary, the sRNAanno database is a great resource to facilitate genomic and genetic research on plant small RNAs.

2019 ◽  
Author(s):  
Chengjie Chen ◽  
Junting Feng ◽  
Bo Liu ◽  
Jiawei Li ◽  
Lei Feng ◽  
...  

AbstractSmall RNAs (sRNAs) are essential regulatory molecules, including three mayor classes in plants, microRNAs (miRNAs), phased small interfering RNAs (phased siRNAs or phasiRNAs), and heterochromatic siRNAs (hc-siRNAs). Except miRNAs, the other two classes are not well-annotated and collected in public databases for most sequenced plant genomes. We performed comprehensive sRNA annotation for 138 plant species, which have fully sequenced genomes and public next-generation-sequencing (NGS) sRNA data available. The results are available via an online repository called sRNAanno (www.plantsRNAs.org). Compared to plant miRNAs deposited in miRBase, we obtained much more miRNAs, which are more complete and reliable because of consistent and high-stringent criteria used in our miRNA annotation. sRNAanno also provides free access to genomic information for >16,000 PHAS loci and >21,000,000 hc-siRNA loci annotated from these 138 plants. On the basis of Integrative Genomics Viewer (IGV), we developed a visualization tool for browsing NGS sRNA data (IGV-sRNA), which have been integrated a series of new functions compatible to specific sRNA features. To make sRNA annotation an easy task, sRNAanno also provides free service of sRNA annotation to the community. In summary, sRNAanno and IGV-sRNA are great resources to facilitate the genomic and genetic research of plant small RNAs.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Anikó Meijer ◽  
Tim De Meyer ◽  
Klaas Vandepoele ◽  
Tina Kyndt

Abstract Background Small RNAs (sRNAs) regulate numerous plant processes directly related to yield, such as disease resistance and plant growth. To exploit this yield-regulating potential of sRNAs, the sRNA profile of one of the world’s most important staple crops – rice – was investigated throughout plant development using next-generation sequencing. Results Root and leaves were investigated at both the vegetative and generative phase, and early-life sRNA expression was characterized in the embryo and endosperm. This led to the identification of 49,505 novel sRNAs and 5581 tRNA-derived sRNAs (tsRNAs). In all tissues, 24 nt small interfering RNAs (siRNAs) were highly expressed and associated with euchromatic, but not heterochromatic transposable elements. Twenty-one nt siRNAs deriving from genic regions in the endosperm were exceptionally highly expressed, mimicking previously reported expression levels of 24 nt siRNAs in younger endosperm samples. In rice embryos, sRNA content was highly diverse while tsRNAs were underrepresented, possibly due to snoRNA activity. Publicly available mRNA expression and DNA methylation profiles were used to identify putative siRNA targets in embryo and endosperm. These include multiple genes related to the plant hormones gibberellic acid and ethylene, and to seed phytoalexin and iron content. Conclusions This work introduces multiple sRNAs as potential regulators of rice yield and quality, identifying them as possible targets for the continuous search to optimize rice production.


2020 ◽  
Author(s):  
Alex Harkess ◽  
Adam J. Bewick ◽  
Zefu Lu ◽  
Paul Fourounjian ◽  
Joachim Messing ◽  
...  

Abstract5-methylcytosine (5mC) is a modified base often described as necessary for the proper regulation of genes and transposons and for the maintenance of genome integrity in plants. However, the extent of this dogma is limited by the current phylogenetic sampling of land plant species diversity. Here, we report that a monocot plant, Spirodela polyrhiza, has lost CG gene body methylation, genome-wide CHH methylation, and the presence or expression of several genes in the highly conserved RNA-directed DNA methylation (RdDM) pathway. It has also lost the CHH methyltransferase CHROMOMETHYLASE 2. Consequently, the transcriptome is depleted of 24-nucleotide, heterochromatic, small interfering RNAs that act as guides for the deposition of 5mC to RdDM-targeted loci in all other currently sampled angiosperm genomes. Although the genome displays low levels of genome-wide 5mC primarily at LTR retrotransposons, CG maintenance methylation is still functional. In contrast, CHG methylation is weakly maintained even though H3K9me2 is present at loci dispersed throughout the euchromatin and highly enriched at regions likely demarcating pericentromeric regions. Collectively, these results illustrate that S. polyrhiza is maintaining CG and CHG methylation mostly at repeats in the absence of small RNAs. S. polyrhiza reproduces rapidly through clonal propagation in aquatic environments, which we hypothesize may enable low levels of maintenance methylation to persist in large populations.Significance StatementDNA methylation is a widespread chromatin modification that is regularly found in all plant species. By examining one aquatic duckweed species, Spirodela polyrhiza, we find that it has lost highly conserved genes involved in methylation of DNA at sites often associated with repetitive DNA, and within genes, however DNA methylation and heterochromatin is maintained during cell division at other sites. Consequently, small RNAs that normally guide methylation to silence repetitive DNA like retrotransposons are diminished. Despite the loss of a highly conserved methylation pathway, and the reduction of small RNAs that normally target repetitive DNA, transposons have not proliferated in the genome, perhaps due in part to the rapid, clonal growth lifestyle of duckweeds.


2021 ◽  
Vol 22 (5) ◽  
pp. 2737
Author(s):  
Daisy Sproviero ◽  
Stella Gagliardi ◽  
Susanna Zucca ◽  
Maddalena Arigoni ◽  
Marta Giannini ◽  
...  

Identifying biomarkers is essential for early diagnosis of neurodegenerative diseases (NDs). Large (LEVs) and small extracellular vesicles (SEVs) are extracellular vesicles (EVs) of different sizes and biological functions transported in blood and they may be valid biomarkers for NDs. The aim of our study was to investigate common and different miRNA signatures in plasma derived LEVs and SEVs of Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic Lateral Sclerosis (ALS) and Fronto-Temporal Dementia (FTD) patients. LEVs and SEVs were isolated from plasma of patients and healthy volunteers (CTR) by filtration and differential centrifugation and RNA was extracted. Small RNAs libraries were carried out by Next Generation Sequencing (NGS). MiRNAs discriminate all NDs diseases from CTRs and they can provide a signature for each NDs. Common enriched pathways for SEVs were instead linked to ubiquitin mediated proteolysis and Toll-like receptor signaling pathways and for LEVs to neurotrophin signaling and Glycosphingolipid biosynthesis pathway. LEVs and SEVs are involved in different pathways and this might give a specificity to their role in the spreading of the disease. The study of common and different miRNAs transported by LEVs and SEVs can be of great interest for biomarker discovery and for pathogenesis studies in neurodegeneration.


Author(s):  
Anne Krogh Nøhr ◽  
Kristian Hanghøj ◽  
Genis Garcia Erill ◽  
Zilong Li ◽  
Ida Moltke ◽  
...  

Abstract Estimation of relatedness between pairs of individuals is important in many genetic research areas. When estimating relatedness, it is important to account for admixture if this is present. However, the methods that can account for admixture are all based on genotype data as input, which is a problem for low-depth next-generation sequencing (NGS) data from which genotypes are called with high uncertainty. Here we present a software tool, NGSremix, for maximum likelihood estimation of relatedness between pairs of admixed individuals from low-depth NGS data, which takes the uncertainty of the genotypes into account via genotype likelihoods. Using both simulated and real NGS data for admixed individuals with an average depth of 4x or below we show that our method works well and clearly outperforms all the commonly used state-of-the-art relatedness estimation methods PLINK, KING, relateAdmix, and ngsRelate that all perform quite poorly. Hence, NGSremix is a useful new tool for estimating relatedness in admixed populations from low-depth NGS data. NGSremix is implemented in C/C ++ in a multi-threaded software and is freely available on Github https://github.com/KHanghoj/NGSremix.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Anzhen Fu ◽  
Qing Wang ◽  
Jianlou Mu ◽  
Lili Ma ◽  
Changlong Wen ◽  
...  

AbstractChayote (Sechium edule) is an agricultural crop in the Cucurbitaceae family that is rich in bioactive components. To enhance genetic research on chayote, we used Nanopore third-generation sequencing combined with Hi–C data to assemble a draft chayote genome. A chromosome-level assembly anchored on 14 chromosomes (N50 contig and scaffold sizes of 8.40 and 46.56 Mb, respectively) estimated the genome size as 606.42 Mb, which is large for the Cucurbitaceae, with 65.94% (401.08 Mb) of the genome comprising repetitive sequences; 28,237 protein-coding genes were predicted. Comparative genome analysis indicated that chayote and snake gourd diverged from sponge gourd and that a whole-genome duplication (WGD) event occurred in chayote at 25 ± 4 Mya. Transcriptional and metabolic analysis revealed genes involved in fruit texture, pigment, flavor, flavonoids, antioxidants, and plant hormones during chayote fruit development. The analysis of the genome, transcriptome, and metabolome provides insights into chayote evolution and lays the groundwork for future research on fruit and tuber development and genetic improvements in chayote.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoyu Yang ◽  
Chenjiang You ◽  
Xufeng Wang ◽  
Lei Gao ◽  
Beixin Mo ◽  
...  

Abstract Background Small RNAs (sRNAs) including microRNAs (miRNAs) and small interfering RNAs (siRNAs) serve as core players in gene silencing at transcriptional and post-transcriptional levels in plants, but their subcellular localization has not yet been well studied, thus limiting our mechanistic understanding of sRNA action. Results We investigate the cytoplasmic partitioning of sRNAs and their targets globally in maize (Zea mays, inbred line “B73”) and rice (Oryza sativa, cv. “Nipponbare”) by high-throughput sequencing of polysome-associated sRNAs and 3′ cleavage fragments, and find that both miRNAs and a subset of 21-nucleotide (nt)/22-nt siRNAs are enriched on membrane-bound polysomes (MBPs) relative to total polysomes (TPs) across different tissues. Most of the siRNAs are generated from transposable elements (TEs), and retrotransposons positively contributed to MBP overaccumulation of 22-nt TE-derived siRNAs (TE-siRNAs) as opposed to DNA transposons. Widespread occurrence of miRNA-mediated target cleavage is observed on MBPs, and a large proportion of these cleavage events are MBP-unique. Reproductive 21PHAS (21-nt phasiRNA-generating) and 24PHAS (24-nt phasiRNA-generating) precursors, which were commonly considered as noncoding RNAs, are bound by polysomes, and high-frequency cleavage of 21PHAS precursors by miR2118 and 24PHAS precursors by miR2275 is further detected on MBPs. Reproductive 21-nt phasiRNAs are enriched on MBPs as opposed to TPs, whereas 24-nt phasiRNAs are nearly completely devoid of polysome occupancy. Conclusions MBP overaccumulation is a conserved pattern for cytoplasmic partitioning of sRNAs, and endoplasmic reticulum (ER)-bound ribosomes function as an independent regulatory layer for miRNA-induced gene silencing and reproductive phasiRNA biosynthesis in maize and rice.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Ya-nan Zhu ◽  
Jianwei Shen ◽  
Yong Xu

Bacterial quorum sensing (QS) is an important process of cell communication and more and more attention is paid to it. Moreover, the noises are ubiquitous in nature and often play positive role. In this paper, we investigate how the noise enhances the QS though the stochastic resonance (SR) and explain the mechanism of SR in this quorum sensing network. In addition, we also discuss the interaction between the small RNA and the other genes in this network and discover the biological importance.


2018 ◽  
Vol 46 (22) ◽  
pp. 11869-11882 ◽  
Author(s):  
Franziska Bonath ◽  
Judit Domingo-Prim ◽  
Marcel Tarbier ◽  
Marc R Friedländer ◽  
Neus Visa

2017 ◽  
Vol 20 (1) ◽  
pp. 1-20 ◽  
Author(s):  
FABIO ANGEOLETTO ◽  
JUAN PEDRO RUIZ SANZ ◽  
RICARDO MASSULO ALBERTIN ◽  
FREDERICO FONSECA DA SILVA

Abstract Home gardens have considerable biodiversity conservation potential. However, these spaces are unplanned, and there is little information about the flora diversity in the backyards of different social classes. The current study has quantified and compared plant diversity in the backyards of two neighborhoods located in the metropolitan region of Maringá - RMM (Paraná, Brazil), namely, Conjunto Triangulo and Zona 02. The diversity patterns were markedly different when the neighborhoods were compared. Therefore the present study has set some planning guidelines aiming at increasing the presence of woody vegetation, as well as at contributing to biodiversity conservation, including the conservation of endangered plant species, in the backyards of the RMM.


Sign in / Sign up

Export Citation Format

Share Document