scholarly journals Strain-level identification of bacterial tomato pathogens directly from metagenomic sequences

2019 ◽  
Author(s):  
Marco E. Mechan Llontop ◽  
Parul Sharma ◽  
Marcela Aguilera Flores ◽  
Shu Yang ◽  
Jill Pollock ◽  
...  

AbstractRoutine strain-level identification of plant pathogens directly from symptomatic tissue could significantly improve plant disease control and prevention. Here we tested the Oxford Nanopore Technologies (ONT) MinION™ sequencer for metagenomic sequencing of tomato plants either artificially inoculated with a known strain of the bacterial speck pathogenPseudomonas syringaepv.tomato(Pto), or collected in the field and showing bacterial spot symptoms caused by either one of fourXanthomonasspecies. After species-level identification using ONT’s WIMP software and the third party tools Sourmash and MetaMaps, we used Sourmash and MetaMaps with a custom database of representative genomes of bacterial tomato pathogens to attempt strain-level identification. In parallel, each metagenome was assembled and the longest contigs were used as query with the genome-based microbial identification Web service LINbase. Both the read-based and assembly-based approaches correctly identifiedPtostrain T1 in the artificially inoculated samples. The pathogen strain in most field samples was identified as a member ofXanthomonas perforansgroup 2. This result was confirmed by whole genome sequencing of colonies isolated from one of the samples. Although in our case, metagenome-based pathogen identification at the strain-level was achieved, caution still needs to be exerted when interpreting strain-level results because of the challenges inherent to assigning reads to specific strains and the error rate of nanopore sequencing.


2020 ◽  
Vol 110 (4) ◽  
pp. 768-779 ◽  
Author(s):  
Marco E. Mechan Llontop ◽  
Parul Sharma ◽  
Marcela Aguilera Flores ◽  
Shu Yang ◽  
Jill Pollok ◽  
...  

Routine strain-level identification of plant pathogens directly from symptomatic tissue could significantly improve plant disease control and prevention. Here we tested the Oxford Nanopore Technologies (ONT) MinION sequencer for metagenomic sequencing of tomato plants either artificially inoculated with a known strain of the bacterial speck pathogen Pseudomonas syringae pv. tomato or collected in the field and showing bacterial spot symptoms caused by one of four Xanthomonas species. After species-level identification via ONT’s WIMP software and the third-party tools Sourmash and MetaMaps, we used Sourmash and MetaMaps with a custom database of representative genomes of bacterial tomato pathogens to attempt strain-level identification. In parallel, each metagenome was assembled and the longest contigs were used as query with the genome-based microbial identification Web service LINbase. Both the read-based and assembly-based approaches correctly identified P. syringae pv. tomato strain T1 in the artificially inoculated samples. The pathogen strain in most field samples was identified as a member of Xanthomonas perforans group 2. This result was confirmed by whole genome sequencing of colonies isolated from one of the samples. Although in our case metagenome-based pathogen identification at the strain level was achieved, caution still must be exercised in interpreting strain-level results because of the challenges inherent to assigning reads to specific strains and the error rate of nanopore sequencing.



2019 ◽  
Author(s):  
Nicholas C. Thomas ◽  
Connor G. Hendrich ◽  
Upinder S. Gill ◽  
Caitilyn Allen ◽  
Samuel F. Hutton ◽  
...  

AbstractXanthomonas species, Pseudomonas syringae and Ralstonia solanacearum are bacterial plant pathogens that cause significant yield loss in many crop species. Current control methods for these pathogens are insufficient but there is significant potential for generating new disease-resistant crop varieties. Plant immune receptors encoded by nucleotide-binding, leucine-rich repeat (NLR) genes typically confer resistance to pathogens that produce a cognate elicitor, often an effector protein secreted by the pathogen to promote virulence. The diverse sequence and presence / absence variation of pathogen effector proteins within and between pathogen species usually limits the utility of a single NLR gene to protecting a plant from a single pathogen species or particular strains. The NLR protein Recognition of XopQ 1 (Roq1) was recently identified from the plant Nicotiana benthamiana and mediates perception of the effector proteins XopQ and HopQ1 from Xanthomonas and P. syringae respectively. Unlike most recognized effectors, alleles of XopQ/HopQ1 are highly conserved and present in most plant pathogenic strains of Xanthomonas and P. syringae. A homolog of XopQ/HopQ1, named RipB, is present in many R. solanacearum strains. We found that Roq1 also mediates perception of RipB and confers immunity to Xanthomonas, P. syringae, and R. solanacearum when expressed in tomato. Strong resistance to Xanthomonas perforans was observed in three seasons of field trials with both natural and artificial inoculation. The Roq1 gene can therefore be used to provide safe, economical and effective control of these pathogens in tomato and other crop species and reduce or eliminate the need for traditional chemical controls.SummaryA single immune receptor expressed in tomato confers strong resistance to three different bacterial diseases.



2021 ◽  
Author(s):  
J. J. Teh ◽  
E. M. Berendsen ◽  
E. C. Hoedt ◽  
S. Kang ◽  
J. Zhang ◽  
...  

AbstractThe mucosa-associated microbiota is widely recognized as a potential trigger for Crohn’s disease pathophysiology but remains largely uncharacterised beyond its taxonomic composition. Unlike stool microbiota, the functional characterisation of these communities using current DNA/RNA sequencing approaches remains constrained by the relatively small microbial density on tissue, and the overwhelming amount of human DNA recovered during sample preparation. Here, we have used a novel ex vivo approach that combines microbe culture from anaerobically preserved tissue with metagenome sequencing (MC-MGS) to reveal patient-specific and strain-level differences among these communities in post-operative Crohn’s disease patients. The 16 S rRNA gene amplicon profiles showed these cultures provide a representative and holistic representation of the mucosa-associated microbiota, and MC-MGS produced both high quality metagenome-assembled genomes of recovered novel bacterial lineages. The MC-MGS approach also produced a strain-level resolution of key Enterobacteriacea and their associated virulence factors and revealed that urease activity underpins a key and diverse metabolic guild in these communities, which was confirmed by culture-based studies with axenic cultures. Collectively, these findings using MC-MGS show that the Crohn’s disease mucosa-associated microbiota possesses taxonomic and functional attributes that are highly individualistic, borne at least in part by novel bacterial lineages not readily isolated or characterised from stool samples using current sequencing approaches.



2019 ◽  
Author(s):  
Tatsuya Nobori ◽  
Yiming Wang ◽  
Jingni Wu ◽  
Sara Christina Stolze ◽  
Yayoi Tsuda ◽  
...  

AbstractUnderstanding how gene expression is regulated in plant pathogens is crucial for pest control and thus global food security. An integrated understanding of bacterial gene regulation in the host is dependent on multi-omic datasets, but these are largely lacking. Here, we simultaneously characterized the transcriptome and proteome of a foliar bacterial pathogen, Pseudomonas syringae, in Arabidopsis thaliana and identified a number of bacterial processes influenced by plant immunity at the mRNA and the protein level. We found instances of both concordant and discordant regulation of bacterial mRNAs and proteins. Notably, the tip component of bacterial type III secretion system was selectively suppressed by the plant salicylic acid pathway at the protein level, suggesting protein-level targeting of the bacterial virulence system by plant immunity. Furthermore, gene co-expression analysis illuminated previously unknown gene regulatory modules underlying bacterial virulence and their regulatory hierarchy. Collectively, the integrated in planta bacterial omics approach provides molecular insights into multiple layers of bacterial gene regulation that contribute to bacterial growth in planta and elucidate the role of plant immunity in controlling pathogens.



2021 ◽  
Author(s):  
Elizabeth Fleming ◽  
Victor Pabst ◽  
Amelia Hoyt ◽  
Wei Zhou ◽  
Rachel Hardy ◽  
...  

Genomics-driven discovery of microbial species have provided extraordinary insights into the biodiversity of human microbiota. High resolution genomics to investigate species- and strain-level diversity and mechanistic studies, however, rely on the availability of individual microbes from a complex microbial consortia. Here, we describe and validate a streamlined workflow for cultivating microbes from the skin, oral, and gut microbiota, informed by metagenomic sequencing, mass spectrometry, and strain profiling.



1999 ◽  
Vol 65 (4) ◽  
pp. 1435-1443 ◽  
Author(s):  
M. Wilson ◽  
S. S. Hirano ◽  
S. E. Lindow

ABSTRACT The growth and survival of pathogenic and nonpathogenicPseudomonas syringae strains and of the nonpathogenic species Pantoea agglomerans, Stenotrophomonas maltophilia, and Methylobacterium organophilum were compared in the phyllosphere of bean. In general, the plant pathogens survived better than the nonpathogens on leaves under environmental stress. The sizes of the total leaf-associated populations of the pathogenic P. syringae strains were greater than the sizes of the total leaf-associated populations of the nonpathogens under dry conditions but not under moist conditions. In these studies the surface sterilants hydrogen peroxide and UV irradiation were used to differentiate cells that were fully exposed on the surface from nonexposed cells that were in “protected sites” that were inaccessible to these agents. In general, the population sizes in protected sites increased with time after inoculation of plants. The proportion of bacteria on leaves that were in protected sites was generally greater for pathogens than for nonpathogens and was greater under dry conditions than under moist conditions. When organisms were vacuum infiltrated into leaves, the sizes of the nonexposed “internal” populations were greater for pathogenic P. syringae strains than for nonpathogenic P. syringaestrains. The sizes of the populations of the nonpathogenic species failed to increase or even decreased. The sizes of nonexposed populations following spray inoculation were correlated with the sizes of nonexposed, internal populations which developed after vacuum infiltration and incubation. While the sizes of the populations of the pathogenic P. syringae strains increased on leaves under dry conditions, the sizes of the populations of the nonpathogenic strains of P. syringae, P. agglomerans, andS. maltophilia decreased when the organisms were applied to plants. The sizes of the populations on dry leaves were also correlated with the sizes of the nonexposed populations that developed following vacuum infiltration. Although pathogenicity was not required for growth in the phyllosphere under high-relative-humidity conditions, pathogenicity apparently was involved in the ability to access and/or multiply in certain protected sites in the phyllosphere and in growth on dry leaves.



2020 ◽  
Author(s):  
Kejal N Dodhia ◽  
Belinda A Cox ◽  
Richard P Oliver ◽  
Francisco J Lopez-Ruiz

AbstractBackgroundThere has been an inexorable increase in the incidence of fungicide resistance in plant pathogens in recent years. Control of diseases and the management of resistance would be greatly aided by rapid diagnostic methods. Quantitative allele specific PCR (ASqPCR) is an ideal technique for the analysis of fungicide resistance in the field as it can both detect and quantify the frequency of mutations associated with fungicide resistance. We have applied this technique to the fungal pathogen Blumeria graminis f. sp. tritici (Bgt), an obligate biotrophic fungus that causes wheat powdery mildew and is responsible for up to 25% yield loss annually. In Australia, strobilurin resistant Bgt was first discovered in samples from Tasmania and Victoria in 2016. Molecular analysis revealed a nucleotide transversion in the cytochrome bc1 enzyme (cytb) complex, resulting in a substitution of alanine for glycine at position 143 (G143A) in Cytb.ResultsWe have developed an in-field ASqPCR assay that can quantify both the resistant (A143) and sensitive (G143) cytb alleles down to 1.67% in host and Bgt DNA mixtures within 90 min of sample collection. The in situ analysis of field samples collected during a survey in Tasmania revealed A143 frequencies ranging between 9-100%. We validated the analysis with a newly developed laboratory based digital PCR assay and found no significant differences between the two methods.ConclusionWe have successfully developed an in-field quantification method, for a QoI resistant allele, by pairing an ASqPCR assay on a lightweight qPCR instrument with a quick DNA extraction method. The deployment of this type of methodologies in the field can contribute to the effective in-season management of fungicide resistance.



Pathogens ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 613
Author(s):  
Alfredo Ambrico ◽  
Mario Trupo ◽  
Rosaria Magarelli ◽  
Roberto Balducchi ◽  
Angelo Ferraro ◽  
...  

Several bacteria pathogens are responsible for plant diseases causing significant economic losses. The antibacterial activity of Dunaliella salina microalgae extracts were investigated in vitro and in vivo. First, biomass composition was chemically characterized and subjected to extraction using polar/non-polar solvents. The highest extraction yield was obtained using chloroform:methanol (1:1 v/v) equal to 170 mg g−1 followed by ethanol (88 mg g−1) and hexane (61 mg g−1). In vitro examination of hexane extracts of Dunaliella salina demonstrated antibacterial activity against all tested bacteria. The hexane extract showed the highest amount of β-carotene with respect to the others, so it was selected for subsequent analyses. In vivo studies were also carried out using hexane extracts of D. salina against Pseudomonas syringae pv. tomato and Pectobacterium carotovorum subsp. carotovorum on young tomato plants and fruits of tomato and zucchini, respectively. The treated young tomato plants exhibited a reduction of 65.7% incidence and 77.0% severity of bacterial speck spot disease. Similarly, a reduction of soft rot symptoms was observed in treated tomato and zucchini fruits with a disease incidence of 5.3% and 12.6% with respect to 90.6% and 100%, respectively, for the positive control.



2017 ◽  
Vol 107 (6) ◽  
pp. 645-653 ◽  
Author(s):  
Hitendra Kumar Patel ◽  
Patrizia Ferrante ◽  
Meng Xianfa ◽  
Sree Gowrinadh Javvadi ◽  
Sujatha Subramoni ◽  
...  

Bacterial canker disease caused by Pseudomonas syringae pv. actinidiae, an emerging pathogen of kiwifruit plants, has recently brought about major economic losses worldwide. Genetic studies on virulence functions of P. syringae pv. actinidiae have not yet been reported and there is little experimental data regarding bacterial genes involved in pathogenesis. In this study, we performed a genetic screen in order to identify transposon mutants altered in the lipolytic activity because it is known that mechanisms of regulation, production, and secretion of enzymes often play crucial roles in virulence of plant pathogens. We aimed to identify the set of secretion and global regulatory loci that control lipolytic activity and also play important roles in in planta fitness. Our screen for altered lipolytic activity phenotype identified a total of 58 Tn5 transposon mutants. Mapping all these Tn5 mutants revealed that the transposons were inserted in genes that play roles in cell division, chemotaxis, metabolism, movement, recombination, regulation, signal transduction, and transport as well as a few unknown functions. Several of these identified P. syringae pv. actinidiae Tn5 mutants, notably the functions affected in phosphomannomutase AlgC, lipid A biosynthesis acyltransferase, glutamate–cysteine ligase, and the type IV pilus protein PilI, were also found affected in in planta survival and/or growth in kiwifruit plants. The results of the genetic screen and identification of novel loci involved in in planta fitness of P. syringae pv. actinidiae are presented and discussed.



Sign in / Sign up

Export Citation Format

Share Document