scholarly journals Circadian- and sex-dependent increases in intravenous cocaine self-administration in Npas2 mutant mice

2019 ◽  
Author(s):  
Lauren M. DePoy ◽  
Darius D. Becker-Krail ◽  
Wei Zong ◽  
Kaitlyn Petersen ◽  
Neha M. Shah ◽  
...  

AbstractSubstance use disorder is associated with disruptions in circadian rhythms. The circadian transcription factor neuronal PAS domain protein 2 (NPAS2) is enriched in reward-related brain regions and regulates reward, but its role in substance use is unclear. To examine the role of NPAS2 in drug taking, we measured intravenous cocaine self-administration (acquisition, dose-response, progressive ratio, extinction, cue-induced reinstatement) in wild-type (WT) and Npas2 mutant mice at different times of day. In the light (inactive) phase, cocaine reinforcement was increased in all Npas2 mutants, while self-administration and motivation were affected sex-dependently. These sex differences were amplified during the dark (active) phase with Npas2 mutation increasing self-administration, reinforcement, motivation, extinction responding and reinstatement in females, but only reinforcement in males. To determine whether circulating hormones are driving these sex differences, we ovariectomized WT and Npas2 mutant females and confirmed that unlike sham controls, ovariectomized mutant mice showed no increase in self-administration. To identify whether striatal brain regions are activated in Npas2 mutant females, we measured cocaine-induced ΔFosB expression. Relative to WT, ΔFosB expression was increased in D1+ neurons in the nucleus accumbens core and dorsolateral striatum in Npas2 mutant females after dark phase self-administration. We also identified potential target genes that may underlie the behavioral responses to cocaine in Npas2 mutant females. These results suggest NPAS2 regulates reward and activity in specific striatal regions in a sex and time of day specific manner. Striatal activation could be augmented by circulating sex hormones, leading to an increased effect of Npas2 mutation in females.Significance StatementCircadian disruptions are a common symptom of substance use disorders and chronic exposure to drugs of abuse alters circadian rhythms, which may contribute to subsequent substance use. Diurnal rhythms are commonly found in behavioral responses to drugs of abuse with drug sensitivity and motivation peaking during the dark (active) phase in nocturnal rodents. Emerging evidence links disrupted circadian genes to substance use vulnerability and drug-induced alterations to these genes may augment drug-seeking. The circadian transcription factor NPAS2 is enriched in reward-related brain regions and regulates reward, but its role in substance use is unclear. To examine the role of NPAS2 in drug taking, we measured intravenous cocaine self-administration in wild-type and Npas2 mutant mice at different times of day.

2011 ◽  
Vol 301 (4) ◽  
pp. R1032-R1043 ◽  
Author(s):  
Allison Brager ◽  
Rebecca A. Prosser ◽  
J. David Glass

Acamprosate suppresses alcohol intake and craving in recovering alcoholics; however, the central sites of its action are unclear. To approach this question, brain regions responsive to acamprosate were mapped using acamprosate microimplants targeted to brain reward and circadian areas implicated in alcohol dependence. mPer2 mutant mice with nonfunctional mPer2, a circadian clock gene that gates endogenous timekeeping, were included, owing to their high levels of ethanol intake and preference. Male wild-type (WT) and mPer2 mutant mice received free-choice (15%) ethanol/water for 3 wk. The ethanol was withdrawn for 3 wk and then reintroduced to facilitate relapse. Four days before ethanol reintroduction, mice received bilateral blank or acamprosate-containing microimplants releasing ∼50 ng/day into reward [ventral tegmental (VTA), peduculopontine tegmentum (PPT), and nucleus accumbens (NA)] and circadian [intergeniculate leaflet (IGL) and suprachiasmatic nucleus (SCN)] areas. The hippocampus was also targeted. Circadian locomotor activity was measured throughout. Ethanol intake and preference were greater in mPer2 mutants than in wild-type (WT) mice (27 g·kg−1·day−1 vs. 13 g·kg−1·day−1 and 70% vs. 50%, respectively; both, P < 0.05). In WTs, acamprosate in all areas, except hippocampus, suppressed ethanol intake and preference (by 40–60%) during ethanol reintroduction. In mPer2 mutants, acamprosate in the VTA, PPT, and SCN suppressed ethanol intake and preference by 20–30%. These data are evidence that acamprosate's suppression of ethanol intake and preference are manifest through actions within major reward and circadian sites.


2020 ◽  
Vol 4 (s1) ◽  
pp. 95-95
Author(s):  
Sunita N Misra ◽  
Theresa M. Czech ◽  
Jennifer A. Kearney

OBJECTIVES/GOALS: Variants in voltage-gated sodium channels (VGSC) are a common cause of severe early onset epilepsy. Changes in CSF neurotransmitters (NT) were identified in 2 cases of VGSC-related epilepsy. Here we investigate NT changes in patients and a novel mouse model of VGSC-related epilepsy. METHODS/STUDY POPULATION: We conducted a single site IRB approved retrospective chart review of patients with VGSC-related epilepsy who underwent CSF NT testing for diagnostic purposes. In parallel, we examined NT levels from the brains of wild-type (WT) and a novel VGSC-related epilepsy mouse model after obtaining IACUC approval. We rapidly isolated forebrain, cortex, striatum, and brainstem from 5-6 animals per sex and genotype. A combination of HPLC with electrochemical detection and mass spectrometry were used to quantify NT levels from brain samples. RESULTS/ANTICIPATED RESULTS: We identified 10 patients with VGSC-related epilepsy who received CSF NT testing. Two of these patients had abnormal NT results including changes to dopamine (DA) or serotonin (5-HT) metabolites. We analyzed NT levels from four brain regions from male and female WT and VGSC-related epilepsy mice. We anticipate that most of the NT levels will be similar to WT, however subtle changes in the DA or 5-HT metabolites may be seen in VGSC-related epilepsy. DISCUSSION/SIGNIFICANCE OF IMPACT: Patients with VGSC-related epilepsy often have autism spectrum disorder, sleep, and movement disorders. Understanding the role of aberrant NT levels in VGSC-related epilepsy may provide additional therapeutic targets that address common neuropsychological comorbidities as well as seizures.


Endocrinology ◽  
2013 ◽  
Vol 154 (10) ◽  
pp. 3796-3806 ◽  
Author(s):  
Gaëtan Prevost ◽  
Arnaud Arabo ◽  
Long Jian ◽  
Eddy Quelennec ◽  
Dorthe Cartier ◽  
...  

Selenoproteins are involved in the regulation of redox status, which affects several cellular processes, including cell survival and homeostasis. Considerable interest has arisen recently concerning the role of selenoproteins in the regulation of glucose metabolism. Here, we found that selenoprotein T (SelT), a new thioredoxin-like protein of the endoplasmic reticulum, is present at high levels in human and mouse pancreas as revealed by immunofluorescence and quantitative PCR. Confocal immunohistochemistry studies revealed that SelT is mostly confined to insulin- and somatostatin-producing cells in mouse and human islets. To elucidate the role of SelT in β-cells, we generated, using a Cre-Lox strategy, a conditional pancreatic β-cell SelT-knockout C57BL/6J mice (SelT-insKO) in which SelT gene disruption is under the control of the rat insulin promoter Cre gene. Glucose administration revealed that male SelT-insKO mice display impaired glucose tolerance. Although insulin sensitivity was not modified in the mutant mice, the ratio of glucose to insulin was significantly higher in the SelT-insKO mice compared with wild-type littermates, pointing to a deficit in insulin production/secretion in mutant mice. In addition, morphometric analysis showed that islets from SelT-insKO mice were smaller and that their number was significantly increased compared with islets from their wild-type littermates. Finally, we found that SelT is up-regulated by pituitary adenylate cyclase-activating polypeptide (PACAP) in β-pancreatic cells and that SelT could act by facilitating a feed-forward mechanism to potentiate insulin secretion induced by the neuropeptide. Our findings are the first to show that the PACAP-regulated SelT is localized in pancreatic β- and δ-cells and is involved in the control of glucose homeostasis.


1998 ◽  
Vol 5 (4) ◽  
pp. 317-330 ◽  
Author(s):  
Kisun Jun ◽  
Gildon Choi ◽  
Sung-Gu Yang ◽  
Kwan Yong Choi ◽  
Hyun Kim ◽  
...  

To define the physiological role of IP33-kinase(A) in vivo, we have generated a mouse strain with a null mutation of the IP33-kinase(A) locus by gene targeting. Homozygous mutant mice were fully viable, fertile, apparently normal, and did not show any morphological anomaly in brain sections. In the mutant brain, the IP4 level was significantly decreased whereas the IP3 level did not change, demonstrating a major role of IP33-kinase(A) in the generation of IP4. Nevertheless, no significant difference was detected in the hippocampal neuronal cells of the wild-type and the mutant mice in the kinetics of Ca2+ regulation after glutamate stimulation. Electrophysiological analyses carried out in hippocampal slices showed that the mutation significantly enhanced the LTP in the hippocampal CA1 region, but had no effect on the LTP in dentate gyrus (DG). No difference was noted, however, between the mutant and the wild-type mice in the Morris water maze task. Our results indicate that IP33-kinase(A) may play an important role in the regulation of LTP in hippocampal CA1 region through the generation of IP4, but the enhanced LTP in the hippocampal CA1 does not affect spatial learning and memory.


2014 ◽  
Vol 281 (1781) ◽  
pp. 20140034 ◽  
Author(s):  
Philipp Bechstein ◽  
Nils-Jörn Rehbach ◽  
Gowzekan Yuhasingham ◽  
Christoph Schürmann ◽  
Melanie Göpfert ◽  
...  

Laboratory mice are well capable of performing innate routine behaviour programmes necessary for courtship, nest-building and exploratory activities although housed for decades in animal facilities. We found that in mice inactivation of the clock gene Period1 profoundly changes innate routine behaviour programmes like those necessary for courtship, nest building, exploration and learning. These results in wild-type and Period1 mutant mice, together with earlier findings on courtship behaviour in wild-type and period -mutant Drosophila melanogaster , suggest a conserved role of Period- genes on innate routine behaviour. Additionally, both per -mutant flies and Period1 -mutant mice display spatial learning and memory deficits. The profound influence of Period1 on routine behaviour programmes in mice, including female partner choice, may be independent of its function as a circadian clock gene, since Period1 -deficient mice display normal circadian behaviour.


2021 ◽  
Author(s):  
◽  
Dane Aronsen

<p>Rationale: 3,4-methylenedioxymethamphetamine (MDMA) is a less efficacious reinforcer than other drugs of abuse. However, following repeated self-administration, responding increases for some animals and efficacy becomes comparable to other drugs of abuse. MDMA-stimulated serotonin (5-HT) release was negatively associated with acquisition of MDMA self-administration, and a neurotoxic 5-HT lesion reduced the latency to acquire self-administration. These findings suggest that MDMA-produced 5-HT release is an important component of self-administration. The receptor mechanisms are not, however, well understood, although it has often been suggested that the mechanism involves 5-HT-mediated inhibition of dopamine. Both 5-HT1A and 5-HT1B receptors are well localised to regulate dopamine release, and both have been implicated in modulating the reinforcing effects of many drugs of abuse.   Objectives: The first objective was to establish specific behavioural assays to reflect 5-HT1A and 5-HT1B receptor activation. Then, using the established behavioural assays, the aim was to determine the role of 5-HT1A and 5-HT1B receptors in the acquisition of MDMA self-administration. The impact of substantial MDMA self-administration on 5-HT1A and 5-HT1B receptors was also assessed.  Methods: Firstly, dose-effect relationships for the hyperactive response to the 5-HT1A receptor agonist, 8-OH-DPAT (0 – 3.0 mg/kg) and the hyperactive and adipsic response to the 5-HT1B/1A receptor agonist, RU 24969 (0 – 3.0 mg/kg) were determined. Selectivity of these responses was determined by co-administration of the 5-HT1A receptor antagonist, WAY 100635, or the 5-HT1B/1D receptor antagonist, GR 127935. Secondly, a pretreatment regimen of the RU 24969 (2 × 3.0 mg/kg/day, 3 days), which had been suggested to down-regulate 5-HT1B/1A receptors, was administered prior to self-administration testing. The effect of this manipulation on both the acquisition of MDMA self-administration, and the behavioural responses to 5-HT1A and 5-HT1B receptor activation, was measured. A further study measured behavioural responses to 5-HT1A or 5-HT1B receptor agonists prior to self-administration, to determine whether the variability in these responses would predict the variability in the latency to acquisition of MDMA self-administration. Lastly, the effect of substantial MDMA self-administration (350 mg/kg) on dose-response curves for the behavioural effects of 5-HT1A or 5-HT1B receptor activation was assessed.   Results: The hyperactive response to the 5-HT1B/1A receptor agonist, RU 24969, was blocked by the 5-HT1A receptor antagonist, WAY 100635, but not the 5-HT1B receptor antagonist, GR127935. Similarly, the hyperactive response to the 5-HT1A receptor agonist, 8-OH-DPAT, was dose-dependently blocked by WAY 100635. GR 127935, but not WAY 100635, blocked the adipsic response to RU 24969. Repeated administration of RU 24969 produced rightward shifts in the dose-response curves for 8-OH-DPAT-produced hyperactivity and RU 24969-produced adipsia, and also greatly facilitated the acquisition of MDMA self-administration. However, there was no correlation between latency to acquire MDMA self-administration and the hyperactive response to 8-OH-DPAT or the adipsic response to RU 24969, and MDMA self-administration failed to alter these behavioural response to activation of 5-HT1A or 5-HT1B receptors.   Conclusions: The hyperactive response to 8-OH-DPAT and the adipsic response to RU 24969 reflect activation of 5-HT1A and 5-HT1B receptors, respectively. The variability in acquisition of MDMA self-administration was reduced by a treatment that also down-regulated 5-HT1A and 5-HT1B receptors, however there was no further indication that these receptors play a critical role in the self-administration of MDMA. Instead, it seems likely that other 5-HT receptors have a greater impact on MDMA self-administration.</p>


2021 ◽  
Author(s):  
◽  
Dane Aronsen

<p>Rationale: 3,4-methylenedioxymethamphetamine (MDMA) is a less efficacious reinforcer than other drugs of abuse. However, following repeated self-administration, responding increases for some animals and efficacy becomes comparable to other drugs of abuse. MDMA-stimulated serotonin (5-HT) release was negatively associated with acquisition of MDMA self-administration, and a neurotoxic 5-HT lesion reduced the latency to acquire self-administration. These findings suggest that MDMA-produced 5-HT release is an important component of self-administration. The receptor mechanisms are not, however, well understood, although it has often been suggested that the mechanism involves 5-HT-mediated inhibition of dopamine. Both 5-HT1A and 5-HT1B receptors are well localised to regulate dopamine release, and both have been implicated in modulating the reinforcing effects of many drugs of abuse.   Objectives: The first objective was to establish specific behavioural assays to reflect 5-HT1A and 5-HT1B receptor activation. Then, using the established behavioural assays, the aim was to determine the role of 5-HT1A and 5-HT1B receptors in the acquisition of MDMA self-administration. The impact of substantial MDMA self-administration on 5-HT1A and 5-HT1B receptors was also assessed.  Methods: Firstly, dose-effect relationships for the hyperactive response to the 5-HT1A receptor agonist, 8-OH-DPAT (0 – 3.0 mg/kg) and the hyperactive and adipsic response to the 5-HT1B/1A receptor agonist, RU 24969 (0 – 3.0 mg/kg) were determined. Selectivity of these responses was determined by co-administration of the 5-HT1A receptor antagonist, WAY 100635, or the 5-HT1B/1D receptor antagonist, GR 127935. Secondly, a pretreatment regimen of the RU 24969 (2 × 3.0 mg/kg/day, 3 days), which had been suggested to down-regulate 5-HT1B/1A receptors, was administered prior to self-administration testing. The effect of this manipulation on both the acquisition of MDMA self-administration, and the behavioural responses to 5-HT1A and 5-HT1B receptor activation, was measured. A further study measured behavioural responses to 5-HT1A or 5-HT1B receptor agonists prior to self-administration, to determine whether the variability in these responses would predict the variability in the latency to acquisition of MDMA self-administration. Lastly, the effect of substantial MDMA self-administration (350 mg/kg) on dose-response curves for the behavioural effects of 5-HT1A or 5-HT1B receptor activation was assessed.   Results: The hyperactive response to the 5-HT1B/1A receptor agonist, RU 24969, was blocked by the 5-HT1A receptor antagonist, WAY 100635, but not the 5-HT1B receptor antagonist, GR127935. Similarly, the hyperactive response to the 5-HT1A receptor agonist, 8-OH-DPAT, was dose-dependently blocked by WAY 100635. GR 127935, but not WAY 100635, blocked the adipsic response to RU 24969. Repeated administration of RU 24969 produced rightward shifts in the dose-response curves for 8-OH-DPAT-produced hyperactivity and RU 24969-produced adipsia, and also greatly facilitated the acquisition of MDMA self-administration. However, there was no correlation between latency to acquire MDMA self-administration and the hyperactive response to 8-OH-DPAT or the adipsic response to RU 24969, and MDMA self-administration failed to alter these behavioural response to activation of 5-HT1A or 5-HT1B receptors.   Conclusions: The hyperactive response to 8-OH-DPAT and the adipsic response to RU 24969 reflect activation of 5-HT1A and 5-HT1B receptors, respectively. The variability in acquisition of MDMA self-administration was reduced by a treatment that also down-regulated 5-HT1A and 5-HT1B receptors, however there was no further indication that these receptors play a critical role in the self-administration of MDMA. Instead, it seems likely that other 5-HT receptors have a greater impact on MDMA self-administration.</p>


2021 ◽  
Vol 4 (Supplement_1) ◽  
pp. 4-5
Author(s):  
Z Taleb ◽  
K Stokes ◽  
H Wang ◽  
S M Collins ◽  
W I Khan ◽  
...  

Abstract Background The circadian clock is a highly conserved molecular pacemaker found in nearly every cell of the body. It consists of the genes BMAL1 and CLOCK that positively regulate CRY and PER, their negative regulators, resulting in a transcription/translation feedback loop that has a 24 hour cycle. This core clock mechanism drives the rhythmic expression of over 40% of the genome in a tissue-specific manner and therefore imposes 24 hour rhythms on many physiological processes. Shift work, which causes disruptions to the natural 24 hour physiological rhythms, has been shown to lead to an increased incidence of inflammatory bowel disease (IBD). Aims This study aims to characterize daily rhythms in inflammation and regeneration of the colon upon induction of acute colitis. We also aim to investigate the intestinal epithelial-specific effects of circadian clock disruption on overall disease progression. We hypothesize that the absence of a functional circadian clock eliminates proliferation rhythms of intestinal epithelial cells and disrupts the rhythms of inflammatory cytokines, thereby increasing the pathogenesis of IBD. Methods We tested the role of the clock in IBD using BMAL1+/+ (wild type) and BMAL1-/- (null mutant) mice. We also investigated the effects of the circadian clock specific to intestinal epithelial tissue using Vil+/+;BMAL1flox/flox (control) and VilCre/+;BMAL1flox/flox (conditional intestinal epithelial mutant) mice. Dextran Sulfate Sodium (DSS) was applied to induce acute colitis. Results We observed significantly decreased survival of BMAL1 circadian clock mutant mice when given colitis. A histology analysis indicates increased lesioning and overall inflammation in BMAL1-/- colon tissue. Disease activity and cytokine analyses reveal time-dependent severity in inflammatory response that is worse in BMAL1-/- mice. To test the circadian rhythms in intestinal regeneration of mice with IBD, we performed a 24 hour analysis comparing epithelial cell proliferation and cell death in colon tissue. We observed rhythmic expression of phosphor-histone H3 (a mitosis marker) in wild type mice which is eliminated in the BMAL1-/- lacking a circadian clock. Cell death which was measured by caspase 3 did not exhibit any differences between genotypes. Based on these results, we conclude that the loss of clock function leads to impaired regeneration during IBD, in part due to decreased and arrhythmic cell proliferation. Preliminary results in our VilCre/+;BMAL1flox/flox conditional intestinal epithelial mutant mice indicate that some of these effects may be epithelial-specific. Conclusions Our results support a critical role of the circadian clock in inflammatory bowel disease development. These data highlight that the circadian clock affects the regenerative abilities of intestinal epithelial cells. Funding Agencies CIHRChron’s and Colitis Canada, Ontario, University of Windsor


2020 ◽  
pp. JN-RM-1830-20
Author(s):  
Lauren M. DePoy ◽  
Darius D. Becker-Krail ◽  
Wei Zong ◽  
Kaitlyn Petersen ◽  
Neha M. Shah ◽  
...  

Endocrinology ◽  
2008 ◽  
Vol 149 (7) ◽  
pp. 3576-3580 ◽  
Author(s):  
Hiroyoshi Sei ◽  
Katsutaka Oishi ◽  
Sachiko Chikahisa ◽  
Kazuyoshi Kitaoka ◽  
Eiji Takeda ◽  
...  

Arterial pressure (AP), heart rate (HR), and cardiovascular diseases, including ischemic heart attack and cerebrovascular accident, show diurnal variation. Evidence that circadian-related genes contribute to cardiovascular control has been accumulated. In this study, we measured the AP and HR of Clock mutant mice on the Jcl/ICR background to determine the role of the Clock gene in cardiovascular function. Mice with mutated Clock genes had a dampened diurnal rhythm of AP and HR, compared with wild-type control mice, and this difference disappeared after adrenalectomy. The diurnal acrophase in both mean arterial pressure and HR was delayed significantly in Clock mutant mice, compared with wild-type mice, and this difference remained after adrenalectomy. Clock mutant mice had a lower concentration of plasma aldosterone, compared with wild-type mice. Our data suggest that the adrenal gland is involved in the diurnal amplitude, but not the acrophase, of AP and HR, and that the function of the Clock gene may be related to the nondipping type of AP elevation.


Sign in / Sign up

Export Citation Format

Share Document