scholarly journals Ultra-high field imaging reveals increased whole brain connectivity underpins cognitive strategies that attenuate pain

2019 ◽  
Author(s):  
Enrico Schulz ◽  
Anne Stankewitz ◽  
Anderson M Winkler ◽  
Stephanie Irving ◽  
Viktor Witkovsky ◽  
...  

ABSTRACTWe investigate how the attenuation of pain with cognitive interventions affects the strength of cortical connections by pursuing a whole brain approach. While receiving tonic cold pain, 20 healthy participants were asked to utilise three different pain attenuation strategies. During a 7T fMRI recording, participants were asked to rate their pain after each single trial. We related the trial-by-trial variability of the attenuation performance to the trial-by-trial functional connectivity of the cortical data.Across all conditions, we found that a higher performance of pain attenuation was predominantly associated with higher functional connectivity. Of note, we observed an association between low pain and high connectivity for regions that belong to the core areas of pain processing, i.e. the insular and cingulate cortices. For one of the cognitive strategies (safe place), the performance of pain attenuation was explained by diffusion tensor imaging metrics of increased white matter integrity.Impact StatementIn a single trial analysis, the more effective attempts to attenuate pain in three different conditions are associated with general higher functional connectivity across the entire brain.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Enrico Schulz ◽  
Anne Stankewitz ◽  
Anderson M Winkler ◽  
Stephanie Irving ◽  
Viktor Witkovský ◽  
...  

We investigated how the attenuation of pain with cognitive interventions affects brain connectivity using neuroimaging and a whole brain novel analysis approach. While receiving tonic cold pain, 20 healthy participants performed three different pain attenuation strategies during simultaneous collection of functional imaging data at seven tesla. Participants were asked to rate their pain after each trial. We related the trial-by-trial variability of the attenuation performance to the trial-by-trial functional connectivity strength change of brain data. Across all conditions, we found that a higher performance of pain attenuation was predominantly associated with higher functional connectivity. Of note, we observed an association between low pain and high connectivity for regions that belong to brain regions long associated with pain processing, the insular and cingulate cortices. For one of the cognitive strategies (safe place), the performance of pain attenuation was explained by diffusion tensor imaging metrics of increased white matter integrity.


2020 ◽  
Author(s):  
Enrico Schulz ◽  
Anne Stankewitz ◽  
Anderson M Winkler ◽  
Stephanie Irving ◽  
Viktor Witkovský ◽  
...  

2021 ◽  
Author(s):  
Andrew Lynn ◽  
Eric D. Wilkey ◽  
Gavin Price

The human brain comprises multiple canonical networks, several of which are distributed across frontal, parietal, and temporooccipital regions. Studies report both positive and negative correlations between children’s math skills and the strength of functional connectivity among these regions during math-related tasks and at rest. Yet, it is unclear how the relation between children’s math skills and functional connectivity map onto patterns of distributed whole-brain connectivity, canonical network connectivity, and whether these relations are consistent across different task-states. We used connectome-based predictive modeling to test whether functional connectivity during number comparison and at rest predicts children’s math skills (N=31, Mage=9.21years) using distributed whole-brain connections versus connections among canonical networks. We found that weaker connectivity distributed across the whole brain and weaker connectivity between key math-related brain regions in specific canonical networks predicts better math skills in childhood. The specific connections predicting math skills, and whether they were distributed or mapped onto canonical networks, varied between tasks, suggesting that state-dependent rather than trait-level functional network architectures support children’s math skills. Furthermore, the current predictive modeling approach moves beyond brain-behavior correlations and toward building models of brain connectivity that may eventually aid in predicting future math skills.


2019 ◽  
Author(s):  
Jonathan F. O’Rawe ◽  
Hoi-Chung Leung

AbstractDescribing the pattern of region-to-region functional connectivity is an important step towards understanding information transfer and transformation between brain regions. Although fMRI data are limited in spatial resolution, recent advances in technology afford more precise mapping. Here, we extended previous methods, connective field mapping, to 3 dimensions to provide a more concise estimate of the organization and potential information transformation from one region to another. We first replicated previous work with the 3 dimensional model by showing that the topology of functional connectivity between early visual regions maintained along their eccentricity axis or the anterior-posterior dimension. We then examined higher order visual regions (e,g, fusiform face area) and showed that their pattern of connectivity, the convergence and biased sampling, seem to contribute to some of their core receptive field properties. We further demonstrated that linearity of input is a fundamental aspect of functional connectivity of the whole brain, with higher linearity between regions within a network than across networks; that is, high connective linearity was evident between early visual areas, and between prefrontal areas, but less evident between them. By decomposing the whole brain linearity matrix with manifold learning techniques, we found that the principle mode of the linearity maps onto decompositions in both functional connectivity and genetic expression reported in previous studies. The current work provides evidence supporting that linearity of input is likely a fundamental motif of functional connectivity between regions for information processing across the brain, with high linearity preserving the integrity of information from one region to another within a network.


2022 ◽  
Vol 15 ◽  
Author(s):  
Leehyun Yoon ◽  
Angelica F. Carranza ◽  
Johnna R. Swartz

Although adolescence is a period in which developmental changes occur in brain connectivity, personality formation, and peer interaction, few studies have examined the neural correlates of personality dimensions related to social behavior within adolescent samples. The current study aims to investigate whether adolescents’ brain functional connectivity is associated with extraversion and agreeableness, personality dimensions linked to peer acceptance, social network size, and friendship quality. Considering sex-variant neural maturation in adolescence, we also examined sex-specific associations between personality and functional connectivity. Using resting-state functional magnetic resonance imaging (fMRI) data from a community sample of 70 adolescents aged 12–15, we examined associations between self-reported extraversion and agreeableness and seed-to-whole brain connectivity with the amygdala as a seed region of interest. Then, using 415 brain regions that correspond to 8 major brain networks and subcortex, we explored neural connectivity within brain networks and across the whole-brain. We conducted group-level multiple regression analyses with the regressors of extraversion, agreeableness, and their interactions with sex. Results demonstrated that amygdala connectivity with the postcentral gyrus, middle temporal gyrus, and the temporal pole is positively associated with extraversion in girls and negatively associated with extraversion in boys. Agreeableness was positively associated with amygdala connectivity with the middle occipital cortex and superior parietal cortex, in the same direction for boys and girls. Results of the whole-brain connectivity analysis revealed that the connectivity of the postcentral gyrus, located in the dorsal attention network, with regions in default mode network (DMN), salience/ventral attention network, and control network (CON) was associated with extraversion, with most connections showing positive associations in girls and negative associations in boys. For agreeableness, results of the within-network connectivity analysis showed that connections within the limbic network were positively associated with agreeableness in boys while negatively associated with or not associated with agreeableness in girls. Results suggest that intrinsic functional connectivity may contribute to adolescents’ individual differences in extraversion and agreeableness and highlights sex-specific neural connectivity patterns associated with the two personality dimensions. This study deepens our understanding of the neurobiological correlates of adolescent personality that may lead to different developmental trajectories of social experience.


2021 ◽  
Vol 11 (3) ◽  
pp. 310
Author(s):  
Xiaoxuan Fan ◽  
Yujia Wu ◽  
Lei Cai ◽  
Jingwen Ma ◽  
Ning Pan ◽  
...  

Cantonese-Mandarin bilinguals are logographic-logographic bilinguals that provide a unique population for bilingual studies. Whole brain functional connectivity analysis makes up for the deficiencies of previous bilingual studies on the seed-based approach and helps give a complete picture of the brain connectivity profiles of logographic-logographic bilinguals. The current study is to explore the effect of the long-term logographic-logographic bilingual experience on the functional connectivity of the whole-brain network. Thirty Cantonese-Mandarin bilingual and 30 Mandarin monolingual college students were recruited in the study. Resting state functional magnetic resonance imaging (rs-fMRI) was performed to investigate the whole-brain functional connectivity differences by network-based statistics (NBS), and the differences in network efficiency were investigated by graph theory between the two groups (false discovery rate corrected for multiple comparisons, q = 0.05). Compared with the Mandarin monolingual group, Cantonese-Mandarin bilinguals increased functional connectivity between the bilateral frontoparietal and temporal regions and decreased functional connectivity in the bilateral occipital cortex and between the right sensorimotor region and bilateral prefrontal cortex. No significant differences in network efficiency were found between the two groups. Compared with the Mandarin monolinguals, Cantonese-Mandarin bilinguals had no significant discrepancies in network efficiency. However, the Cantonese-Mandarin bilinguals developed a more strongly connected subnetwork related to language control, inhibition, phonological and semantic processing, and memory retrieval, whereas a weaker connected subnetwork related to visual and phonology processing, and speech production also developed.


2018 ◽  
Author(s):  
Amit Naskar ◽  
Anirudh Vattikonda ◽  
Gustavo Deco ◽  
Dipanjan Roy ◽  
Arpan Banerjee

AbstractPrevious neuro-computational studies have established the connection of spontaneous resting-state brain activity with “large-scale” neuronal ensembles using dynamic mean field approach and showed the impact of local excitatory−inhibitory (E−I) balance in sculpting dynamical patterns. Here, we argue that whole brain models that link multiple scales of physiological organization namely brain metabolism that governs synaptic concentrations of gamma-aminobutyric acid (GABA) and glutamate on one hand and neural field dynamics that operate on the macroscopic scale. The multiscale dynamic mean field (MDMF) model captures the synaptic gating dynamics over a cortical macrocolumn as a function of neurotransmitter kinetics. Multiple MDMF units were placed in brain locations guided by an anatomical parcellation and connected by tractography data from diffusion tensor imaging. The resulting whole-brain model generates the resting-state functional connectivity and also reveal that optimal configurations of glutamate and GABA captures the dynamic working point of the brain, that is the state of maximum metsatability as observed in BOLD signals. To demonstrate test-retest reliability we validate the observation that healthy resting brain dynamics is governed by optimal glutamate-GABA configurations using two different brain parcellations for model set-up. Furthermore, graph theoretical measures of segregation (modularity and clustering coefficient) and integration (global efficiency and characteristic path length) on the functional connectivity generated from healthy and pathological brain network studies could be explained by the MDMF model. In conclusion, the MDMF model could relate the various scales of observations from neurotransmitter concentrations to dynamics of synaptic gating to whole-brain resting-state network topology in health and disease.


2019 ◽  
Author(s):  
Daisy A. Burr ◽  
Tracy d'Arbeloff ◽  
Maxwell Elliott ◽  
Annchen R. Knodt ◽  
Bartholomew D. Brigidi ◽  
...  

Previous research has identified specific brain regions associated with regulating emotion using common strategies such as expressive suppression and cognitive reappraisal. However, most research focuses on a priori regions and directs participants how to regulate, which may not reflect how people naturally regulate outside the laboratory. Here, we used a data-driven approach to investigate how individual differences in distributed intrinsic functional brain connectivity predict emotion regulation tendency. Specifically, we used connectome-based predictive modeling to extract functional connections in the brain significantly related to the dispositional use of suppression and reappraisal. These edges were then used in a predictive model and cross-validated in novel participants to identify a neural signature that reflects individual differences in the tendency to suppress and reappraise emotion. We found a significant neural signature for the dispositional use of suppression, but not reappraisal. Within this whole-brain signature, the intrinsic connectivity of the default mode network was most informative of suppression tendency. In addition, the predictive performance of this model was significant in males, but not females. These findings help inform how whole-brain networks of functional connectivity characterize how people tend to regulate emotion outside the laboratory.


Sign in / Sign up

Export Citation Format

Share Document