scholarly journals Development of anin vitroExperimental Model for Investigating the Effect of Matrix Stiffness on Epithelial Barrier Permeability

2019 ◽  
Author(s):  
Neilloy Roy ◽  
Emily Turner-Brannen ◽  
Adrian R West

ABSTRACTEpithelial cells are well-known to be modulated by extracellular mechanical factors including substrate stiffness. However, the effect of substrate stiffness on an epithelial cell’s principal function –creating an effective barrier to protect the underlying tissue – cannot be directly measured using existing experimental techniques. We developed a strategy involving ethylenediamine aminolysis and glutaraldehyde crosslinking to chemically graft polyacrylamide hydrogels with tunable stiffness to PET Transwell membranes. Grafting success was evaluated using spectroscopic methods, scrape tests, and extended incubation in culture. By assessing apical to basolateral transfer of fluorescent tracers, we demonstrated that our model is permeable to biologically relevant molecules and usable for direct measurement of barrier function by calculating paracellular permeability.We found that BEAS-2B epithelial cells form a more effective barrier on stiff substrates, likely attributable to increased cell spreading. We also observed barrier impairment after treatment with transforming growth factor beta, indicating loss of cell-cell junctions, validating our model’s ability to detect biologically relevant stimuli. Thus, we have created an experimental model that allows explicit measurement of epithelial barrier function for cells grown on different substrate stiffnesses. This model will be a valuable tool to study mechanical regulation of epithelial and endothelial barrier function in health and disease.

2007 ◽  
Vol 293 (5) ◽  
pp. L1321-L1331 ◽  
Author(s):  
Magdalena J. Lorenowicz ◽  
Mar Fernandez-Borja ◽  
Anne-Marieke D. van Stalborch ◽  
Marian A. J. A. van Sterkenburg ◽  
Pieter S. Hiemstra ◽  
...  

Cadherin-mediated cell-cell adhesion controls the morphology and function of epithelial cells and is a critical component of the pathology of chronic inflammatory disorders. Dynamic interactions between cadherins and the actin cytoskeleton are required for stable cell-cell contact. Besides actin, microtubules also target intercellular, cadherin-based junctions and contribute to their formation and stability. Here, we studied the role of microtubules in conjunction with Rho-like GTPases in the regulation of lung epithelial barrier function using real-time monitoring of transepithelial electrical resistance. Unexpectedly, we found that disruption of microtubules promotes epithelial cell-cell adhesion. This increase in epithelial barrier function is accompanied by the accumulation of β-catenin at cell-cell junctions, as detected by immunofluorescence. Moreover, we found that the increase in cell-cell contact, induced by microtubule depolymerization, requires signaling through a RhoA/Rho kinase pathway. The Rac-1 GTPase counteracts this pathway, because inhibition of Rac-1 signaling rapidly promotes epithelial barrier function, in a microtubule- and RhoA-independent fashion. Together, our data suggest that microtubule-RhoA-mediated signaling and Rac-1 control lung epithelial integrity through counteracting independent pathways.


2008 ◽  
Vol 19 (9) ◽  
pp. 3701-3712 ◽  
Author(s):  
Jie Chen ◽  
Lan Xiao ◽  
Jaladanki N. Rao ◽  
Tongtong Zou ◽  
Lan Liu ◽  
...  

The AP-1 transcription factor JunD is highly expressed in intestinal epithelial cells, but its exact role in maintaining the integrity of intestinal epithelial barrier remains unknown. The tight junction (TJ) protein zonula occludens (ZO)-1 links the intracellular domain of TJ-transmembrane proteins occludin, claudins, and junctional adhesion molecules to many cytoplasmic proteins and the actin cytoskeleton and is crucial for assembly of the TJ complex. Here, we show that JunD negatively regulates expression of ZO-1 and is implicated in the regulation of intestinal epithelial barrier function. Increased JunD levels by ectopic overexpression of the junD gene or by depleting cellular polyamines repressed ZO-1 expression and increased epithelial paracellular permeability. JunD regulated ZO-1 expression at the levels of transcription and translation. Transcriptional repression of ZO-1 by JunD was mediated through cAMP response element-binding protein-binding site within its proximal region of the ZO-1-promoter, whereas induced JunD inhibited ZO-1 mRNA translation by enhancing the interaction of the ZO-1 3′-untranslated region with RNA-binding protein T cell-restricted intracellular antigen 1-related protein. These results indicate that JunD is a biological suppressor of ZO-1 expression in intestinal epithelial cells and plays a critical role in maintaining epithelial barrier function.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3194
Author(s):  
Yutaka Suzuki ◽  
Sachi Chiba ◽  
Koki Nishihara ◽  
Keiichi Nakajima ◽  
Akihiko Hagino ◽  
...  

Epithelial barrier function in the mammary gland acts as a forefront of the defense mechanism against mastitis, which is widespread and a major disorder in dairy production. Chemerin is a chemoattractant protein with potent antimicrobial ability, but its role in the mammary gland remains unelucidated. The aim of this study was to determine the function of chemerin in mammary epithelial tissue of dairy cows in lactation or dry-off periods. Mammary epithelial cells produced chemerin protein, and secreted chemerin was detected in milk samples. Chemerin treatment promoted the proliferation of cultured bovine mammary epithelial cells and protected the integrity of the epithelial cell layer from hydrogen peroxide (H2O2)-induced damage. Meanwhile, chemerin levels were higher in mammary tissue with mastitis. Tumor necrosis factor alpha (TNF-α) strongly upregulated the expression of the chemerin-coding gene (RARRES2) in mammary epithelial cells. Therefore, chemerin was suggested to support mammary epithelial cell growth and epithelial barrier function and to be regulated by inflammatory stimuli. Our results may indicate chemerin as a novel therapeutic target for diseases in the bovine mammary gland.


2011 ◽  
Vol 301 (1) ◽  
pp. L40-L49 ◽  
Author(s):  
Leslie A. Mitchell ◽  
Christian E. Overgaard ◽  
Christina Ward ◽  
Susan S. Margulies ◽  
Michael Koval

Alveolar barrier function depends critically on the claudin family tight junction proteins. Of the major claudins expressed by alveolar epithelial cells, claudin (Cldn)-3 and Cldn-4 are the most closely related by amino acid homology, yet they differ dramatically in the pattern of expression. Previously published reports have shown that Cldn-3 is predominantly expressed by type II alveolar epithelial cells; Cldn-4 is expressed throughout the alveolar epithelium and is specifically upregulated in response to acute lung injury. Using primary rat alveolar epithelial cells transduced with yellow fluorescent protein-tagged claudin constructs, we have identified roles for Cldn-3 and Cldn-4 in alveolar epithelial barrier function. Surprisingly, increasing expression of Cldn-3 decreased alveolar epithelial barrier function, as assessed by transepithelial resistance and dye flux measurements. Conversely, increasing Cldn-4 expression improved alveolar epithelial transepithelial resistance compared with control cells. Other alveolar epithelial tight junction proteins were largely unaffected by increased expression of Cldn-3 and Cldn-4. Taken together, these results demonstrate that, in the context of the alveolar epithelium, Cldn-3 and Cldn-4 have different effects on paracellular permeability, despite significant homology in their extracellular loop domains.


2021 ◽  
Author(s):  
Yun Ji ◽  
Shuting Fang ◽  
Ying Yang ◽  
Zhenlong Wu

Abstract Background Nephrolithiasis (also known as renal stones) is a common disease condition in companion animals, including dogs and cats. Dysfunction of renal tubular epithelial cells involves in the pathogenesis of renal stones. However, a functional role of Wnt/β-catenin signaling and its contribution to nephrolithiasis remains unknown. Results In the present study, we found that Mardin-Darby canine kidney (MDCK) cells treated with sodium oxalate resulted in reduced cell proliferation and migration, which was associated with the G0/G1 phase arrest of cell cycle progression. In addition, sodium oxalate exposure led to decreased transepithelial electrical resistance (TEER) and increased paracellular permeability. The deleterious effect of sodium oxalate on epithelial barrier function was related to decreased protein abundances of claudin-1, occludin, zonula occludens (ZO)-1, ZO-2 and ZO-3. Of note, protein levels of p-β-catenin (Ser552) in MDCK cells were repressed by sodium oxalate, indicating an inhibitory effect on the Wnt/β-catenin signaling. Intriguingly, SB216763, a GSK-3β inhibitor, enhanced the expression p-β-catenin (Ser552), and protected against epithelial barrier dysfunction in sodium oxalate-treated MDCK cells. Conclusion Taken together, our results revealed a critical role of Wnt/β-catenin signaling on the epithelial barrier function of MDCK cells. Activation of Wnt/β-catenin signaling might be an potentially therapeutic target for the treatment of renal stones in animals.


Author(s):  
Luciën E.P.M. Van der Vlugt ◽  
Katrien Eger ◽  
Gimano D. Amatngalim ◽  
Christoph Müller ◽  
Franz Bracher ◽  
...  

2000 ◽  
Vol 68 (10) ◽  
pp. 5635-5644 ◽  
Author(s):  
James K. Roche ◽  
Clovis A. P. Martins ◽  
Rosana Cosme ◽  
Ronald Fayer ◽  
Richard L. Guerrant

ABSTRACT Exposure to oocysts of the protozoan Cryptosporidium parvum causes intestinal epithelial cell dysfunction in vivo and in vitro, but effective means by which mucosal injury might be prevented remain unclear. We examined the ability of transforming growth factor β1 (TGF-β1)—a cytokine synthesized and released by cells in the intestine—to preserve the barrier function of human colonic epithelia when challenged with C. parvum oocysts and then studied the mechanisms involved. Epithelial barrier function was monitored electrophysiologically, receptors for TGF-β1 were localized by confocal microscopy, and TGF-β1-induced protein kinase C activation was detected intracellularly by translocation of its α isozyme. TGF-β1 alone enhanced intestinal epithelial barrier function, while exposure to C. parvum oocysts (≥105/monolayer) markedly reduced barrier function to ≤40% of that of the control. When epithelial monolayers were pretreated with TGF-β1 at 5.0 ng/ml, the barrier-disrupting effect ofC. parvum oocysts was almost completely abrogated for 96 h. Further investigation showed that (i) the RI and RII receptors for TGF-β1 were present on 55 and 65% of human epithelial cell line cells, respectively, over a 1-log-unit range of receptor protein expression, as shown by flow cytometry and confirmed by confocal microscopy; (ii) only basolateral and not apical TGF-β1 exposure of the polarized epithelial monolayer resulted in a protective effect; and (iii) TGF-β1 had no direct effect on the organism in reducing its tissue-disruptive effects. In exploring mechanisms to account for the barrier-preserving effects of TGF-β1 on epithelium, we found that the protein kinase C pathway was activated, as shown by translocation of its 80-kDa α isozyme within 30 s of epithelial exposure to TGF-β1; the permeability of epithelial monolayers to passage of macromolecules was reduced by 42% with TGF-β1, even in the face of active protozoal infection; and epithelial cell necrosis monitored by lactate dehydrogenase release was decreased by 50% 70 h after oocyst exposure. Changes in epithelial function, initiated through an established set of surface receptors, likely accounts for the remarkable barrier-sparing effect of nanogram-per-milliliter concentrations of TGF-β1 when human colonic epithelium is exposed to an important human pathogen, C. parvum.


Sign in / Sign up

Export Citation Format

Share Document