scholarly journals The dynamic equilibrium of nascent and parental MCMs safeguards replicating genomes

2019 ◽  
Author(s):  
Hana Sedlackova ◽  
Maj-Britt Rask ◽  
Rajat Gupta ◽  
Chunaram Choudhary ◽  
Kumar Somyajit ◽  
...  

The MCM2-7 (minichromosome maintenance) protein complex is a DNA unwinding motor required for the eukaryotic genome duplication1. Although a huge excess of MCM2-7 is loaded onto chromatin in G1 phase to form pre-replication complexes (pre-RCs), only 5-10 percent are converted into a productive CDC45-MCM-GINS (CMG) helicase in S phase – a perplexing phenomenon often referred to as the ‘MCM paradox’2. Remaining pre-RCs stay dormant but can be activated under replication stress (RS)3. Remarkably, even a mild reduction in MCM pool results in genome instability4, 5, underscoring the critical requirement for high-level MCM maintenance to safeguard genome integrity across generations of dividing cells. How this is achieved remains unknown. Here, we show that for daughter cells to sustain error-free DNA replication, their mothers build up a stable nuclear pool of MCMs both by recycling of chromatin-bound MCMs (referred to as parental pool) and synthesizing new MCMs (referred to as nascent pool). We find that MCMBP, a distant MCM paralog6, ensures the influx of nascent MCMs to the declining recycled pool, and thereby sustains critical levels of MCMs. MCMBP promotes nuclear translocation of nascent MCM3-7 (but not MCM2), which averts accelerated MCM proteolysis in the cytoplasm, and thereby fosters assembly of licensing-competent nascent MCM2-7 units. Consequently, lack of MCMBP leads to reduction of nascent MCM3-7 subunits in mother cells, which translates to poor MCM inheritance and grossly reduced pre-RCs formation in daughter cells. Unexpectedly, whereas the pre-RC paucity caused by MCMBP deficiency does not alter the overall bulk DNA synthesis, it escalates the speed and asymmetry of individual replisomes. This in turn increases endogenous replication stress and renders cells hypersensitive to replication perturbations. Thus, we propose that surplus of MCMs is required to safeguard replicating genomes by modulating physiological dynamics of fork progression through chromatin marked by licensed but inactive MCM2-7 complexes.

2019 ◽  
Vol 218 (7) ◽  
pp. 2169-2184 ◽  
Author(s):  
Jacob Peter Matson ◽  
Amy M. House ◽  
Gavin D. Grant ◽  
Huaitong Wu ◽  
Joanna Perez ◽  
...  

To maintain tissue homeostasis, cells transition between cell cycle quiescence and proliferation. An essential G1 process is minichromosome maintenance complex (MCM) loading at DNA replication origins to prepare for S phase, known as origin licensing. A p53-dependent origin licensing checkpoint normally ensures sufficient MCM loading before S phase entry. We used quantitative flow cytometry and live cell imaging to compare MCM loading during the long first G1 upon cell cycle entry and the shorter G1 phases in the second and subsequent cycles. We discovered that despite the longer G1 phase, the first G1 after cell cycle re-entry is significantly underlicensed. Consequently, the first S phase cells are hypersensitive to replication stress. This underlicensing results from a combination of slow MCM loading with a severely compromised origin licensing checkpoint. The hypersensitivity to replication stress increases over repeated rounds of quiescence. Thus, underlicensing after cell cycle re-entry from quiescence distinguishes a higher-risk first cell cycle that likely promotes genome instability.


Cell Reports ◽  
2017 ◽  
Vol 19 (7) ◽  
pp. 1351-1364 ◽  
Author(s):  
Mansi Arora ◽  
Justin Moser ◽  
Harsha Phadke ◽  
Ashik Akbar Basha ◽  
Sabrina L. Spencer

2018 ◽  
Author(s):  
Kai Doberstein ◽  
Alison Karst ◽  
Paul T Kroeger ◽  
Ronny Drapkin

SummaryAcross multiple cancer types, genome instability has been linked to aberrant over-expression of CCNE1 due to premature cell cycle entry and replication stress. Using a gain-of-function screen, we found that XRCC2 cooperates with CCNE1 in the neoplastic transformation of TP53 mutant cells. A pan-cancer analysis of TCGA data revealed a striking correlation between CCNE1 and XRCC2 expression and knockdown of XRCC2 in Cyclin E1 overexpressing cell lines is synthetic lethal. Immunopurification of XRCC2 showed that it interacts with the Minichromosome Maintenance Complex Component 7 (MCM7) protein. This interaction appears to be critical for protecting replication forks as knockdown of XRCC2 leads to a strong increase in MCM7 ubiquitination with concomitant decrease in MCM7 protein levels, and reduced replication fork speed. Importantly, Overexpression of MCM7 rescues the effect of XRCC2 knockdown. Our data describe a new dependency of Cyclin E1 overexpressing tumors on factors that stabilize the replication fork.


2019 ◽  
Author(s):  
Jacob Peter Matson ◽  
Amy M. House ◽  
Gavin D. Grant ◽  
Huaitong Wu ◽  
Joanna Perez ◽  
...  

SUMMARYThe authors find that human cells re-entering the cell cycle from quiescence have both an impaired p53-dependent DNA replication origin licensing checkpoint and slow origin licensing. This combination makes every first S phase underlicensed and hypersensitive to replication stress.ABSTRACTTo maintain tissue homeostasis, cells transition between cell cycle quiescence and proliferation. An essential G1 process is Minichromosome Maintenance complex (MCM) loading at DNA replication origins to prepare for S phase, known as origin licensing. A p53-dependent origin licensing checkpoint normally ensures sufficient MCM loading prior to S phase entry. We used quantitative flow cytometry and live cell imaging to compare MCM loading during the long first G1 upon cell cycle entry and the shorter G1 phases in the second and subsequent cycles. We discovered that despite the longer G1 phase, the first G1 after cell cycle re-entry is significantly underlicensed. As a result, the first S phase cells are hypersensitive to replication stress. This underlicensing is from a combination of slow MCM loading with a severely compromised origin licensing checkpoint. The hypersensitivity to replication stress increases over repeated rounds of quiescence. Thus, underlicensing after cell cycle re-entry from quiescence distinguishes a higher risk cell cycle that promotes genome instability.


2021 ◽  
Vol 22 (9) ◽  
pp. 4959
Author(s):  
Lilas Courtot ◽  
Elodie Bournique ◽  
Chrystelle Maric ◽  
Laure Guitton-Sert ◽  
Miguel Madrid-Mencía ◽  
...  

DNA replication timing (RT), reflecting the temporal order of origin activation, is known as a robust and conserved cell-type specific process. Upon low replication stress, the slowing of replication forks induces well-documented RT delays associated to genetic instability, but it can also generate RT advances that are still uncharacterized. In order to characterize these advanced initiation events, we monitored the whole genome RT from six independent human cell lines treated with low doses of aphidicolin. We report that RT advances are cell-type-specific and involve large heterochromatin domains. Importantly, we found that some major late to early RT advances can be inherited by the unstressed next-cellular generation, which is a unique process that correlates with enhanced chromatin accessibility, as well as modified replication origin landscape and gene expression in daughter cells. Collectively, this work highlights how low replication stress may impact cellular identity by RT advances events at a subset of chromosomal domains.


2018 ◽  
Vol 115 (52) ◽  
pp. E12235-E12244 ◽  
Author(s):  
Lisa L. Hua ◽  
Takashi Mikawa

Pairing homologous chromosomes is required for recombination. However, in nonmeiotic stages it can lead to detrimental consequences, such as allelic misregulation and genome instability, and is rare in human somatic cells. How mitotic recombination is prevented—and how genetic stability is maintained across daughter cells—is a fundamental, unanswered question. Here, we report that both human and mouse cells impede homologous chromosome pairing by keeping two haploid chromosome sets apart throughout mitosis. Four-dimensional analysis of chromosomes during cell division revealed that a haploid chromosome set resides on either side of a meridional plane, crossing two centrosomes. Simultaneous tracking of chromosome oscillation and the spindle axis, using fluorescent CENP-A and centrin1, respectively, demonstrates collective genome behavior/segregation of two haploid sets throughout mitosis. Using 3D chromosome imaging of a translocation mouse with a supernumerary chromosome, we found that this maternally derived chromosome is positioned by parental origin. These data, taken together, support the identity of haploid sets by parental origin. This haploid set-based antipairing motif is shared by multiple cell types, doubles in tetraploid cells, and is lost in a carcinoma cell line. The data support a mechanism of nuclear polarity that sequesters two haploid sets along a subcellular axis. This topological segregation of haploid sets revisits an old model/paradigm and provides implications for maintaining mitotic fidelity.


1994 ◽  
Vol 127 (6) ◽  
pp. 1985-1993 ◽  
Author(s):  
B K Kennedy ◽  
N R Austriaco ◽  
L Guarente

The yeast Saccharomyces cerevisiae typically divides asymmetrically to give a large mother cell and a smaller daughter cell. As mother cells become old, they enlarge and produce daughter cells that are larger than daughters derived from young mother cells. We found that occasional daughter cells were indistinguishable in size from their mothers, giving rise to a symmetric division. The frequency of symmetric divisions became greater as mother cells aged and reached a maximum occurrence of 30% in mothers undergoing their last cell division. Symmetric divisions occurred similarly in rad9 and ste12 mutants. Strikingly, daughters from old mothers, whether they arose from symmetric divisions or not, displayed reduced life spans relative to daughters from young mothers. Because daughters from old mothers were larger than daughters from young mothers, we investigated whether an increased size per se shortened life span and found that it did not. These findings are consistent with a model for aging that invokes a senescence substance which accumulates in old mother cells and is inherited by their daughters.


2020 ◽  
Author(s):  
Elizabeth W. Kahney ◽  
Lydia Sohn ◽  
Kayla Viets-Layng ◽  
Robert Johnston ◽  
Xin Chen

ABSTRACTStem cells have the unique ability to undergo asymmetric division which produces two daughter cells that are genetically identical, but commit to different cell fates. The loss of this balanced asymmetric outcome can lead to many diseases, including cancer and tissue dystrophy. Understanding this tightly regulated process is crucial in developing methods to treat these abnormalities. Here, we report that produced from a Drosophila female germline stem cell asymmetric division, the two daughter cells differentially inherit histones at key genes related to either maintaining the stem cell state or promoting differentiation, but not at constitutively active or silenced genes. We combined histone labeling with DNA Oligopaints to distinguish old versus new histone distribution and visualize their inheritance patterns at single-gene resolution in asymmetrically dividing cells in vivo. This strategy can be widely applied to other biological contexts involving cell fate establishment during development or tissue homeostasis in multicellular organisms.


2014 ◽  
Vol 51 (3-4) ◽  
pp. 381-387 ◽  
Author(s):  
Teresa Tykarska

Starch appears first in the suspensor of the proembryo with two-cell apical part. It is observed in the embryo proper from the octant stage. At first it is visible in all the embryo cells in the form of minute transient grains which disappear during cell divisions. But the columella mother cells and their derivatives have persistent large grains. When the embryo turns green in the heart stage a gradual accumulation of storage starch begins and lasts to the end of embryogenesis. Storage starch grains appear first in the auter cortex layers of the hypocotyl where the largest grains are to be found later, and afterwards in all the other tissues. Starch is usually absent in the frequently dividing cells, but even there it appears in the form of minute grains after the end of cell divisions. Disappearance of starch starts when the intensive green colour of the seed coat begins to fade. The first to disappear are the smallest granules in the regions where they were noted latest. In the embryo axis the starch grains remain deposited longest in dermatogen and cortex cells in the lower hypocotyl part. They are visible there, still when the seed turns brown. In black seeds starch may be only found in the columella the cells of which throughout embryogenesis contain amyloplasts filled with starch. These grains disappear completely at the time when the seeds become dry.


2010 ◽  
Vol 192 (16) ◽  
pp. 4134-4142 ◽  
Author(s):  
Jennifer R. Juarez ◽  
William Margolin

ABSTRACT The Min system regulates the positioning of the cell division site in many bacteria. In Escherichia coli, MinD migrates rapidly from one cell pole to the other. In conjunction with MinC, MinD helps to prevent unwanted FtsZ rings from assembling at the poles and to stabilize their positioning at midcell. Using time-lapse microscopy of growing and dividing cells expressing a gfp-minD fusion, we show that green fluorescent protein (GFP)-MinD often paused at midcell in addition to at the poles, and the frequency of midcell pausing increased as cells grew longer and cell division approached. At later stages of septum formation, GFP-MinD often paused specifically on only one side of the septum, followed by migration to the other side of the septum or to a cell pole. About the time of septum closure, this irregular pattern often switched to a transient double pole-to-pole oscillation in the daughter cells, which ultimately became a stable double oscillation. The splitting of a single MinD zone into two depends on the developing septum and is a potential mechanism to explain how MinD is distributed equitably to both daughter cells. Septal pausing of GFP-MinD did not require MinC, suggesting that MinC-FtsZ interactions do not drive MinD-septal interactions, and instead MinD recognizes a specific geometric, lipid, and/or protein target at the developing septum. Finally, we observed regular end-to-end oscillation over very short distances along the long axes of minicells, supporting the importance of geometry in MinD localization.


Sign in / Sign up

Export Citation Format

Share Document