scholarly journals “Ghost ponds” – How to resurrect in-filled farmland ponds to assist aquatic biodiversity conservation in agricultural landscapes

2019 ◽  
Author(s):  
Emily Alderton ◽  
Carl D. Sayer ◽  
Jan C. Axmacher ◽  
Ian R. Patmore ◽  
Helene Burningham ◽  
...  

ABSTRACTGrowing recognition of the importance of ponds for landscape-scale biodiversity has led to considerable interest in their conservation, focusing on new pond creation, or existing pond restoration. However, there is a third approach; the re-excavation of ‘ghost ponds’ – former ponds deliberately filled-in due to agricultural intensification. Previous work has shown ghost ponds to retain viable sediment propagules of many aquatic plants for over a century, allowing for the rapid re-colonisation of resurrected pond sites. Here we detail the practicalities of the ghost pond resurrection approach, describing how to locate, identify, and excavate ghost ponds in agricultural land. We also report on colonisation by aquatic macrophytes and water beetles (Coleoptera) for three ghost pond resurrections in Norfolk, eastern England and make comparisons with neighbouring extant ponds restored to open-canopy conditions via major scrub and sediment removal at the same time. Ecologically important macrophyte taxa, including charophyte and Potamogeton species, successfully established in the ghost ponds and within one year they supported a comparable species diversity to the adjacent restored ponds. Our findings show that, where appropriate to land management goals, ghost pond resurrection could be a very valuable conservation approach within farmed landscapes.

2014 ◽  
Vol 20 (4) ◽  
pp. 366 ◽  
Author(s):  
Alena Mogoutnov ◽  
Jackie Venning

Agricultural landscapes in southern Australia were once dominated by temperate eucalypt woodlands of which only fragmented patches and scattered trees in paddocks remain. This study focuses on the decline of scattered trees in the Mount Lofty Ranges and South East agricultural regions of South Australia. A combination of digitized aerial photography and satellite imagery was used to extend a previous assessment of decline undertaken in the early 1980s and increase the period over which decline was assessed to 58–72 years. A total of 17 049 scattered trees were counted from the earliest time period assessed over 11 sites of which 6 185 trees were lost by 2008 — a 36 % decline. Recruitment of 2 179 trees during this period was evident. Imagery indicates that clearing for agricultural intensification is the primary cause of the decline. A range of management options and policy settings are required to reverse the decline notwithstanding the challenges of implementation at a landscape scale across privately owned land.


2007 ◽  
Vol 363 (1492) ◽  
pp. 777-787 ◽  
Author(s):  
Les G Firbank ◽  
Sandrine Petit ◽  
Simon Smart ◽  
Alasdair Blain ◽  
Robert J Fuller

Agricultural intensification is best considered as the level of human appropriation of terrestrial net primary production. The global value is set to increase from 30%, increasing pressures on biodiversity. The pressures can be classified in terms of spatial scale, i.e. land cover, landscape management and crop management. Different lowland agricultural landscapes in Great Britain show differences among these pressures when habitat diversity and nutrient surplus are used as indicators. Eutrophication of plants was correlated to N surplus, and species richness of plants correlated with broad habitat diversity. Bird species diversity only correlated with habitat diversity when the diversity of different agricultural habitats was taken into account. The pressures of agricultural change may be reduced by minimizing loss of large habitats, minimizing permanent loss of agricultural land, maintaining habitat diversity in agricultural landscapes in order to provide ecosystem services, and minimizing pollution from nutrients and pesticides from the crops themselves. While these pressures could potentially be quantified using an internationally consistent set of indicators, their impacts would need to be assessed using a much larger number of locally applicable biodiversity indicators.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vít Zelinka ◽  
Johana Zacharová ◽  
Jan Skaloš

AbstractThe term Sudetenland refers to large regions of the former Czechoslovakia that had been dominated by Germans. German population was expelled directly after the Second World War, between 1945 and 1947. Almost three million people left large areas in less than two years. This population change led to a break in the relationship between the people and the landscape. The aim of the study is to compare the trajectories of these changes in agricultural landscapes in lower and higher altitudes, both in depopulated areas and areas with preserved populations. This study included ten sites in the region of Northern Bohemia in Czechia (18,000 ha in total). Five of these sites represent depopulated areas, and the other five areas where populations remained preserved. Changes in the landscape were assessed through a bi-temporal analysis of land use change by using aerial photograph data from time hoirzons of 2018 and 1953. Land use changes from the 1950s to the present are corroborated in the studied depopulated and preserved areas mainly by the trajectory of agricultural land to forest. The results prove that both population displacement and landscape type are important factors that affect landscape changes, especially in agricultural landscapes.


Author(s):  
Kurniatun Hairiah

Maintaining and where feasible restoring soil carbon stocks is part of all sustainable development strategies that have a chance of meeting the global commitment of the Paris Agreement to contain global warming within a 1.5<sup>o</sup>C limit. Active policies to incentivize increased soil carbon storage require under­standing of the drivers of soil carbon decline, as well as the conditions under which soil management leads to an increase. Soil carbon transitions -- shifts from decline to increase of soil carbon stocks -- have been recorded as part of agricultural intensification. Organic inputs supporting soil carbon may primarily depend on roots, rather than aboveground inputs, and thus on the choice of crops, trees, and grasses that make up an agricultural land use system.


Purpose. To characterize the methodological approaches that we develop in the formation of a system of information support for the creation and maintenance of the functioning of modern sustainable agricultural landscapes and to show the results of their implementation on the example of the territory of some agricultural enterprises of the Kharkiv region. Methods. Cartographic, geoinformation analysis, calculation, statistical and mathematical. Results. Some results of the work of the collective on the issues of information support for the creation and maintenance of the functioning of modern sustainable agricultural landscapes. Namely, verification of erosion models, studies of the functionality of shelter belts, the formation of an agroeconet (an extensive network of natural and quasi-natural landscapes) on agricultural land massifs, which ensures the maintenance of stable functioning of meso and macrolevel agrolandscapes, as well as the experience of using magnetic prospecting methods to verify the results of mathematical modeling of erosion processes. Conclusions. A number of methodological approaches to information support of the formation of sustainable agricultural landscapes in the natural and socio-economic conditions of Ukraine have been developed. They relate to the functioning of anti-erosion measures of permanent action, the processes of modern transformation of agro-landscapes, the ecological impact of erosion processes on the environment. The connection between the length of forest belts per unit of arable land and soil erosion is shown. A methodical approach has been developed to estimate the amount of soil washed away from arable land and to calculate the measures necessary to eliminate its harmful effects on the environment.


2020 ◽  
Vol 12 (3) ◽  
pp. 339-348
Author(s):  
Vladimir TATARINTSEV ◽  
◽  
Leonid TATARINTSEV ◽  
Alex MATSYURA ◽  
Andrei BONDAROVICH ◽  
...  

The aim of the work was the landscape analysis of agricultural geographical landscapes in the Altai Territory and elaboration of measures aimed at the rational use of agricultural lands. Environmental and landscape (landscape) approach became the main method of scientific research used in the analysis of modern agricultural landscapes. The cartographic method, using GIS-technologies, made it possible to digitize the obtained materials. Synthesized maps of agro-ecological, natural and other zoning of territories are based on topographic, soil, geobotanical and other thematic maps made during land surveying during the field survey. Retrospective analysis, induction and deduction methods,analysis and synthesis, as well as the abstract-logic method were also used in the work. Our main result was the analysis of land use territory for agricultural enterprise in municipal district of Altai Krai. Exploration of lands indicates a pronounced plant-growing specialization of JSC “Pobeda” with a developed animal breeding direction. Limiting factors affecting the rational use of land are natural and climatic conditions, terrain,unsystematic anthropogenic activity and, as a result, the development of erosion processes. The degree of eroded and deflated arable land is more than 50%, hay and pasture lands are also very unstable. Landscapes have been typified, based on which eleven types of land have been identified and their geomorphological description has been carried out. The first five types of land can be used for agricultural production with limitations compensated by crop technology and erosion control measures, the sixth and seventh types require grassing and, in some cases,conservation, the eighth and ninth types can be partially used for pasture and area valorization; the remaining two are not suitable for agricultural use but should be potentially used for planting and forest management. As a result of the presented transformation of agricultural lands, the structure of cultivated areas has changed. The area of arable land decreased by 877 ha, and of pastures by 365 ha,while the area under hayfields, fallow lands, and forest lands increased by 295, 191, and 875 ha respectively. Low-productive lands were withdrawn from agriculture. We suggested that the sustainability of agricultural land use was mainly caused by the reduction of anthropogenic load and increase in ecological equilibrium of the territory.


2020 ◽  
Vol 28 (4) ◽  
pp. 343-349
Author(s):  
L. V. Oitsius ◽  
H. P. Volovyk ◽  
S. P. Doletskyі ◽  
A. V. Lysytsya

Biological pollution of natural phytocenoses by adventive plant species poses is a serious threat to endemic species and species with narrower ecological amplitude in ecosystems around the world. This study presents the results of a study of the composition and distribution of adventive plant species in natural, semi-natural and anthropogenic transformed phytocenoses of Volyn’ Polissya, Ukraine. To clarify the effect of drainage melioration on non-native flora species distribution, a botanical study was carried out during the 2003–2019 vegetation seasons on the territory of four drainage systems. The adventive flora of this unique region of Europe was studied in detail for the first time. In total, 279 non-native plant species were found. They belong to 110 genera and 32 families. The results of studying the systematic, bioecological, range-distributional and phytogenetic structure of adventive species found within agricultural lands and adjacent territories are presented. It was found that 161 species are associated with agricultural production. Of these, 90 species were found directly within the agricultural land, another 71 species were found growing in the adjacent territories. It was found that a significant increase in the number of adventive species on the territory of Volyn’ Polissya is associated with drainage melioration carried out in the 1960–1990s, significant changes in the structure and forms of agro-industrial production, and climatic changes in recent decades. The expansion of agricultural land in this area over the past 50–60 years has led to an increase in the number of adventive species by more than 60%. On the territory of drainage systems used for agricultural activities, more than 40% of the total species composition of the adventive flora of Volyn’ Polissya is represented. The majority of these species originate from arid and sub arid regions of the planet. The transformer plants, Solidago canadensis L. and Phalacroloma annuum (L.) Dumort pose a potential threat to phytocenoses of the described region, as well as the whole of Europe. Of particular interest are the species that in the future may pose a serious threat to natural phyto-diversity and have negative practical consequences for the structure of agricultural landscapes. These are Ambrosia artemisiifolia L. and Heracleum sosnowskyi Manden. In general, modern agro ecosystems are characterized by instability and low ability to resist non-native species. The strongly weedy character of cultivated fields and the presence of abandoned uncultivated lands have caused the rapid spread of adventive vegetation. In order to further optimize the structure of agrolandscapes, it is advisable to monitor and regulate not only expansionary invasive species, which is especially important for preventing biological pollution, but also species whose status has not yet been determined.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Mamush Masha ◽  
Teshome Yirgu ◽  
Mulugeta Debele ◽  
Mengie Belayneh

Soil and water conservation (SWC) is being advocated as an integral part of agricultural land management as it not only controls/minimizes soil erosion but also restores/rehabilitates the degraded lands. The purpose of this study was to evaluate the impact of soil and water conservation practices in improving soil fertility in the agricultural landscapes of the Damota area, southern Ethiopia. Forty-eight soil samples (both disturbed and core samples) were collected from the conserved and adjacent nonconserved plots. The significance analysis test was performed using analysis of variance. The result of the study showed that higher mean values of soil physicochemical properties were observed in the conserved plot than its nonconserved counterpart. The mean differences of organic carbon, total nitrogen, cation exchange capacity, and exchangeable K+ and Ca2+ between conserved and nonconserved plots were statistically significant at the P < 0.01 level. Besides, available phosphorous and bulk density were significant at P < 0.05 , but the effect of SWC practices was not found significant on soil texture, soil pH, and exchangeable Na+ and Mg2+ content of the soil in the Damota area. Community-based soil and water conservation practices have improved the soil fertility in agricultural landscapes, although significant results have been observed in some fertility indicators. Therefore, strengthening the implementation of conservation measures by participating in all stakeholders is recommended. Supporting physical structures by agronomic and vegetative measures and continued maintenance can bring better results.


Author(s):  
S. M. Vasilyev ◽  
◽  
A. N. Babichev ◽  

Purpose: to establish the basic principles of the organization of reclamed agricultural landscapes and to substantiate the use of the agricultural landscape approach in the organization of the territory. Materials and Methods. When preparing this article, the materials of Russian scientists dealing with the issues of soil fertility conservation and ecological sustainability of reclaimed agricultural landscapes were considered. The methods used were analysis, generalization, synthesis and other methods of working with literary sources on this issue. Results. In performing the work, the main principles and indicators were determined, such as productivity, sustainability, the rule of transforming measures for the natural environment, optimization of the agricultural landscape, authenticity, principles of the formation of reclaimed agricultural landscapes, the complexity of the reclamation impact, the required diversity, the uniqueness of the reclamation impact. The basic requirements for the preservation of soil fertility of reclaimed irrigated agricultural landscape have been established. It was found that to maintain ecological balance within the irrigated agricultural landscape, it is necessary to adhere to the indicators of the reclamation load of the natural environment. The limits of agricultural lands saturation in reclaimed agricultural landscapes for various agro-climatic zones have been substantiated and recommended. Conclusions. It has been determined that the coefficient of reclamation loading of irrigated lands, showing the maximum share of irrigated lands that can be irrigated in a particular climatic zone, varies from 0.3 in the forest-steppe zone to 0.60–0.85 in the semi-desert and desert zone. This suggests that with an increase in moisture supply, this indicator decreases, the recommended amount of agricultural land in various agroclimatic zones varies from 30 to 87 %, while the area of arable land should not exceed 20–25 % in a very dry zone, and with an increase in moisture supply, it can increase up to 80 % in the semi-arid zone. The amount of irrigated land in the reclaimed agricultural landscape should not exceed 18–20 %. Irrigated meadows and pastures should account for 1–2 to 5–6 % of the area.


Sign in / Sign up

Export Citation Format

Share Document