scholarly journals Therapeutic efficacy of an immune stimulatory gene therapy strategy in a mouse model of high grade brainstem glioma

2019 ◽  
Author(s):  
Flor M. Mendez ◽  
Padma Kadiyala ◽  
Felipe J. Nunez ◽  
Stephen Carney ◽  
Fernando Nunez ◽  
...  

AbstractPurposeDiffuse intrinsic pontine glioma (DIPG) bears a dismal prognosis. A genetically engineered brainstem glioma model harboring the recurrent DIPG mutation, ACVR1-G328V (mACVR1), was developed for testing an immune-stimulatory gene therapy.Experimental DesignWe utilized the Sleeping Beauty transposase system to generate an endogenous mouse model of mACVR1 brainstem glioma. Histology was used to characterize and validate the model. We performed RNAseq analysis on neurospheres (NS) harboring mACVR1. mACVR1 NS were implanted into the pons of immune competent mice to test the therapeutic efficacy and toxicity of immune stimulatory gene therapy using adenoviruses expressing thymidine kinase (TK) and fms-like tyrosine kinase 3 ligand (Flt3L). mACVR1 NS expressing the surrogate tumor antigen ovalbumin were generated to investigate if TK/Flt3L treatment induces the recruitment of tumor-antigen specific T cells.ResultsHistological analysis of mACVR1 tumors indicates that they are localized in the brainstem and have increased downstream signaling of bone morphogenetic pathway as demonstrated by increased phospho-smad1/5 and Id1 levels. Transcriptome analysis of mACVR1 NS identified an increase in the transforming growth factor beta (TGF-β) signaling pathway and the regulation of cell differentiation. Adenoviral delivery of TK/Flt3L in mice bearing brainstem gliomas resulted in anti-tumor immunity, recruitment of anti-tumor specific T cells and increased median survival.ConclusionsThis study provides insights into the phenotype and function of the tumor immune microenvironment in a mouse model of brainstem glioma harboring mACVR1. Immune stimulatory gene therapy targeting the hosts’ anti-tumor immune response inhibits tumor progression and increases median survival of mice bearing mACVR1 tumors.Translational RelevanceThe therapeutic efficacy of anti-DIPG immune responses is limited due to a low number of immune cells in the tumor microenvironment. We have uncovered a novel treatment strategy that utilizes adenoviral delivery of therapeutic genes, thymidine kinase (TK) and fms tyrosine kinase 3 ligand (Flt3L) into the tumor, eliciting a reprograming of the host’s own immune system to recognize and kill tumor cells. We demonstrate that TK/Flt3L therapy generates an effective anti-tumor response and can be safely delivered into the brainstem. This treatment approach could provide a novel translational approach towards potentiating an anti-DIPG immune response to overcome the current limitations in the treatment of patients with DIPG.

2020 ◽  
Vol 26 (15) ◽  
pp. 4080-4092 ◽  
Author(s):  
Flor Mendez ◽  
Padma Kadiyala ◽  
Felipe J. Nunez ◽  
Stephen Carney ◽  
Fernando M. Nunez ◽  
...  

Spine ◽  
2003 ◽  
Vol 28 (3) ◽  
pp. 219-226 ◽  
Author(s):  
Hak-Sun Kim ◽  
Manjula Viggeswarapu ◽  
Scott D. Boden ◽  
Yunshan Liu ◽  
Gregory A Hair ◽  
...  

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi102-vi102
Author(s):  
Herui Wang ◽  
Rogelio Medina ◽  
Juan Ye ◽  
Pashayar Lookian ◽  
Ondrej Uher ◽  
...  

Abstract Despite numerous therapeutic advances, the treatment of glioblastoma multiforme (GBM) remains a challenge, with current 5-year survival rates estimated at 4%. Multiple characteristic elements of GBM contribute to its treatment-resistance, including its low immunogenicity and its highly immunosuppressive microenvironment that can effectively disarm adaptive immune responses. Hence, therapeutic strategies that aim to boost T-lymphocyte mediated responses against GBM are of great therapeutic value. Herein, we present a therapeutic vaccination strategy that promotes the phagocytosis of tumor cells, enhances tumor antigen presentation, and induces a tumor-specific adaptive immune response. This strategy consists of vaccinations with irradiated whole tumor cells (rWTC) pulsed with phagocytic agonists (Mannan-BAM), TLR ligands [LTA, Poly (I:C), and R-848], and anti-CD40 antibody (collectively abbreviated as rWTC-MBTA). We evaluated the therapeutic efficacy of rWTC-MBTA strategy in a mouse syngeneic GL261 orthotopic GBM tumor model. rWTC-MBTA or vehicle control were administered subcutaneously over the right foreleg three days after intracranial injection of GL261 cells. Complete regression (CR) of intracranial tumors was achieved in 70% (7/10) of rWTC-MBTA treated animals while none survived in the control group. Immunophenotyping analyses of peripheral lymph nodes and brain tumors of rWTC-MBTA treated mice demonstrated: (1) increased mature dendritic cells and MHC II+ monocytes; (2) increased effector (CD62L-CD44+) CD4-T and CD8-T cells; (3) increased cytotoxic IFNγ-, TNFα-, and granzyme B-secreting CD4-T and CD8-T cells. Of note, the therapeutic efficacy of rWTC-MBTA disappeared in CD4-T and/or CD8-T lymphocyte depleted mice. Three mice that achieved CR were rechallenged with 50k GL261 cells intracranially 14 months after the last rWTC-MBTA treatment and all rechallenged animals resisted GL261 tumor development, confirming the establishment of long-term immunological memory against GL261 tumor cells. Collectively, our study demonstrated that rWTC-MBTA strategy can effectively activate antigen presenting cells and induce more favorable T-cell signatures in the GBM tumors.


2020 ◽  
Vol 8 (2) ◽  
pp. e000421
Author(s):  
Peng Peng ◽  
Hongming Hu ◽  
Ping Liu ◽  
Lisa X Xu

BackgroundTraditional tumor thermal ablations, such as radiofrequency ablation (RFA) and cryoablation, can result in good local control of tumor, but traditional tumor thermal ablations are limited by poor long-term survival due to the failure of control of distal metastasis. Our previous studies developed a novel cryo-thermal therapy to treat the B16F10 melanoma mouse model. Long-term survival and T-cell-mediated durable antitumor immunity were achieved after cryo-thermal therapy, but whether tumor antigen-specific T-cells were augmented by cryo-thermal therapy was not determined.MethodsThe long-term antitumor therapeutic efficacy of cryo-thermal therapy was performed in B16F10 murine melanoma models. Splenocytes derived from mice treated with RFA or cryo-thermal therapy were coincubated with tumor antigen peptides to detect the frequency of antigen specific CD4+ and CD8+ T-cells by flow cytometry. Splenocytes were then stimulated and expanded by αCD3 or peptides and adoptive T-cell therapy experiments were performed to identify the antitumor efficacy of T-cells induced by RFA and cryo-thermal therapy. Naïve mice and tumor-bearing mice were used as control groups.ResultsLocal cryo-thermal therapy generated a stronger systematic antitumor immune response than RFA and a long-lasting antitumor immunity that protected against tumor rechallenge. In vitro studies showed that the antigen-specific CD8+ T-cell response was induced by both cryo-thermal therapy and RFA, but the strong neoantigen-specific CD4+ T-cell response was only induced by cryo-thermal therapy. Cryo-thermal therapy-induced strong antitumor immune response was mainly mediated by CD4+ T-cells, particularly neoantigen-specific CD4+ T-cells.ConclusionCryo-thermal therapy induced a stronger and broader antigen-specific memory T-cells. Specifically, cryo-thermal therapy, but not RFA, led to a strong neoantigen-specific CD4+ T-cell response that mediated the resistance to tumor challenge.


Pancreatology ◽  
2019 ◽  
Vol 19 ◽  
pp. S26
Author(s):  
Juliane Glaubitz ◽  
Anika Wilden ◽  
Cindy van den Brandt ◽  
Frank Ulrich Weiss ◽  
Julia Mayerle ◽  
...  

Nanomedicine ◽  
2020 ◽  
Vol 15 (17) ◽  
pp. 1641-1652
Author(s):  
Wen Liu ◽  
Yuki Takahashi ◽  
Masaki Morishita ◽  
Makiya Nishikawa ◽  
Yoshinobu Takakura

Aim: Tumor-derived small extracellular vesicles (TEVs) are considered for use in inducing tumor antigen-specific immune responses as they contain tumor antigens. The delivery of tumor antigens to the antigen presentation cells (especially dendritic cells [DCs]), and the activation of DCs are the main challenges of TEV therapy. Materials & methods: TEVs were modified with CD40 ligand (CD40L), which can target CD40 expressed on the surface of DCs and can activate them via CD40L-CD40 interactions. Results: It was found that CD40L-TEVs were efficiently taken up by DCs and also activated them. Moreover, tumor antigens were efficiently presented to the T cells by DCs treated with CD40L-TEVs. Conclusion: This study proved that CD40L-modification of TEVs will be helpful for further development of TEV-based tumor vaccination.


Sign in / Sign up

Export Citation Format

Share Document