scholarly journals ApproXON: Heuristic Approximation to the E-Field-Threshold for Deep Brain Stimulation Volume-of-Tissue-Activated Estimation

2019 ◽  
Author(s):  
Daniele Proverbio ◽  
Andreas Husch

AbstractThis paper introduces a heuristic approximation of the e-field threshold used for volume-of-tissue-activated computation in deep brain stimulation. Pulse width and axon diameter are used as predictors. An open source implementation in MATLAB is provided together with an integration in the open LeadDBS deep brain stimulation research toolbox.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Hemmings Wu ◽  
Hartwin Ghekiere ◽  
Dorien Beeckmans ◽  
Tim Tambuyzer ◽  
Kris van Kuyck ◽  
...  

Abstract Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability and affordability. Our open-source closed-loop DBS system is effective and warrants further research using open-source hardware for closed-loop neuromodulation.





Author(s):  
Anita Abeyesekera ◽  
Scott Adams ◽  
Cynthia Mancinelli ◽  
Thea Knowles ◽  
Greydon Gilmore ◽  
...  

ABSTRACT:Objective: To systematically evaluate how different deep brain stimulation of the subthalamic nucleus (STN-DBS) amplitude, frequency, and pulse-width electrical parameter settings impact speech intensity, voice quality, and prosody of speech in Parkinson’s disease (PD). Methods: Ten individuals with PD receiving bilateral STN-DBS treatments were seen for three baseline and five treatment visits. The five treatment visits involved an examination of the standard clinical settings as well as manipulation of different combinations of frequency (low, mid, and high), pulse width (low, mid, and high), and voltage (low, mid, and high) of stimulation. Measures of speech intensity, jitter, shimmer, harmonics–noise ratio, semitone standard deviation, and listener ratings of voice quality and prosody were obtained for each STN-DBS manipulation. Results: The combinations of lower frequency, lower pulse width, and higher voltage settings were associated with improved speech outcomes compared to the current standard clinical settings. In addition, decreased total electrical energy delivered to the STN appears to be associated with speech improvements. Conclusions: This study provides preliminary evidence that STN-DBS may be optimized for Parkinson-related problems with voice quality, speech intensity, and prosody of speech.





2009 ◽  
Vol 102 (3) ◽  
pp. 1811-1820 ◽  
Author(s):  
M. J. Lehmkuhle ◽  
S. S. Bhangoo ◽  
D. R. Kipke

Electrocorticogram (ECoG) recordings of the 6-hydroxydopamine (6-OHDA)–lesioned parkinsonian rat have shown an increase in the power of cortical β-band (15–30 Hz) oscillations ipsilateral to the lesion. The power of these oscillations is decreased with dopamine agonist administration. Here, we demonstrate that stimulation of an electrode implanted in the subthalamic nucleus alters the power of cortical β and γ oscillations in 6-OHDA–lesioned animals. These alterations are dependent on stimulation frequency, charge, and amplitude/pulse width. Oscillations were significantly reduced during 200- and 350-Hz stimulation. A minimum charge of 4 nC was required to elicit a reduction in oscillation power. A number of amplitude and pulse width combinations that reached 4 nC were tested; it was found that only the combinations of 33 μA/120 μs and 65 μA/60 μs significantly reduced cortical oscillations. The reduction in β/γ oscillation power due to deep brain stimulation (DBS) was consistent with a significant reduction in the animals' rotational behavior, a typical symptom of parkinsonism in the rat. A significant shift from high β to low γ was observed in the peak frequencies of ECoG recordings while animals were at rest versus walking on a treadmill. However, DBS exhibited no differential effect on oscillations between these two states. EEG recordings from rodent models of DBS may provide surrogate information about the neural signatures of Parkinson's disease relative to the efficacy of DBS.



2021 ◽  
Vol 11 (11) ◽  
pp. 1450
Author(s):  
Till A. Dembek ◽  
Alexandra Hellerbach ◽  
Hannah Jergas ◽  
Markus Eichner ◽  
Jochen Wirths ◽  
...  

Directional deep brain stimulation (DBS) leads are now widely used, but the orientation of directional leads needs to be taken into account when relating DBS to neuroanatomy. Methods that can reliably and unambiguously determine the orientation of directional DBS leads are needed. In this study, we provide an enhanced algorithm that determines the orientation of directional DBS leads from postoperative CT scans. To resolve the ambiguity of symmetric CT artifacts, which in the past, limited the orientation detection to two possible solutions, we retrospectively evaluated four different methods in 150 Cartesia™ directional leads, for which the true solution was known from additional X-ray images. The method based on shifts of the center of mass (COM) of the directional marker compared to its expected geometric center correctly resolved the ambiguity in 100% of cases. In conclusion, the DiODe v2 algorithm provides an open-source, fully automated solution for determining the orientation of directional DBS leads.



2018 ◽  
Author(s):  
Andreas Horn ◽  
Ningfei Li ◽  
Till A Dembek ◽  
Ari Kappel ◽  
Chadwick Boulay ◽  
...  

AbstractDeep brain stimulation (DBS) is a highly efficacious treatment option for movement disorders and a growing number of other indications are investigated in clinical trials. To ensure optimal treatment outcome, exact electrode placement is required. Moreover, to analyze the relationship between electrode location and clinical results, a precise reconstruction of electrode placement is required, posing specific challenges to the field of neuroimaging. Since 2014 the open source toolbox Lead-DBS is available, which aims at facilitating this process. The tool has since become a popular platform for DBS imaging. With support of a broad community of researchers worldwide, methods have been continuously updated and complemented by new tools for tasks such as multispectral nonlinear registration, structural / functional connectivity analyses, brain shift correction, reconstruction of microelectrode recordings and orientation detection of segmented DBS leads. The rapid development and emergence of these methods in DBS data analysis require us to revisit and revise the pipelines introduced in the original methods publication. Here we demonstrate the updated DBS and connectome pipelines of Lead-DBS using a single patient example with state-of-the-art high-field imaging as well as a retrospective cohort of patients scanned in a typical clinical setting at 1.5T. Imaging data of the 3T example patient is co-registered using five algorithms and nonlinearly warped into template space using ten approaches for comparative purposes. After reconstruction of DBS electrodes (which is possible using three methods and a specific refinement tool), the volume of tissue activated is calculated for two DBS settings using four distinct models and various parameters. Finally, four whole-brain tractography algorithms are applied to the patient’s preoperative diffusion MRI data and structural as well as functional connectivity between the stimulation volume and other brain areas are estimated using a total of eight approaches and datasets. In addition, we demonstrate impact of selected preprocessing strategies on the retrospective sample of 51 PD patients. We compare the amount of variance in clinical improvement that can be explained by the computer model depending on the method of choice.This work represents a multi-institutional collaborative effort to develop a comprehensive, open source pipeline for DBS imaging and connectomics, which has already empowered several studies, and may facilitate a variety of future studies in the field.



2019 ◽  
Vol 35 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Viswas Dayal ◽  
Timothy Grover ◽  
Elina Tripoliti ◽  
Catherine Milabo ◽  
Maricel Salazar ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document