scholarly journals Genomic prediction using low density marker panels in aquaculture: performance across species, traits, and genotyping platforms

2019 ◽  
Author(s):  
Christina Kriaridou ◽  
Smaragda Tsairidou ◽  
Ross D. Houston ◽  
Diego Robledo

ABSTRACTGenomic selection increases the rate of genetic gain in breeding programmes, which results in significant cumulative improvements in commercially important traits such as disease resistance. Genomic selection currently relies on collecting genome-wide genotype data accross a large number of individuals which requires substantial economic investment. However, global aquaculture production predominantly occurs in small and medium sized enterprises for whom this technology can be prohibitively expensive. For genomic selection to benefit these aquaculture sectors more cost-efficient genotyping is necessary. In this study the utility of low and medium density SNP panels (ranging from 100 to 9000 SNPs) to accurate predict breeding values was tested and compared in four aquaculture datasets with different characteristics (species, genome size, genotyping platform, family number and size, total population size, and target trait). A consistent pattern of genomic prediction accuracy was observed across species, with little or no reduction until SNP density was reduced below 1,000 SNPs. Below this SNP density, heritability estimates and genomic prediction accuracies tended to be lower and more variable (93 % of maximum accuracy achieved with 1,000 SNPs, 89 % with 500 SNPs, and 70% with 100 SNPs). Now that a multitude of studies have highlighted the benefits of genomic over pedigree-based prediction of breeding values in aquaculture species, the results of the current study highlight that these benefits can be achieved at lower SNP densities and at lower cost, raising the possibility of a broader application of genetic improvement in smaller and more fragmented aquaculture settings.

2021 ◽  
Vol 12 ◽  
Author(s):  
Channappa Mahadevaiah ◽  
Chinnaswamy Appunu ◽  
Karen Aitken ◽  
Giriyapura Shivalingamurthy Suresha ◽  
Palanisamy Vignesh ◽  
...  

Sugarcane is a C4 and agro-industry-based crop with a high potential for biomass production. It serves as raw material for the production of sugar, ethanol, and electricity. Modern sugarcane varieties are derived from the interspecific and intergeneric hybridization between Saccharum officinarum, Saccharum spontaneum, and other wild relatives. Sugarcane breeding programmes are broadly categorized into germplasm collection and characterization, pre-breeding and genetic base-broadening, and varietal development programmes. The varietal identification through the classic breeding programme requires a minimum of 12–14 years. The precise phenotyping in sugarcane is extremely tedious due to the high propensity of lodging and suckering owing to the influence of environmental factors and crop management practices. This kind of phenotyping requires data from both plant crop and ratoon experiments conducted over locations and seasons. In this review, we explored the feasibility of genomic selection schemes for various breeding programmes in sugarcane. The genetic diversity analysis using genome-wide markers helps in the formation of core set germplasm representing the total genomic diversity present in the Saccharum gene bank. The genome-wide association studies and genomic prediction in the Saccharum gene bank are helpful to identify the complete genomic resources for cane yield, commercial cane sugar, tolerances to biotic and abiotic stresses, and other agronomic traits. The implementation of genomic selection in pre-breeding, genetic base-broadening programmes assist in precise introgression of specific genes and recurrent selection schemes enhance the higher frequency of favorable alleles in the population with a considerable reduction in breeding cycles and population size. The integration of environmental covariates and genomic prediction in multi-environment trials assists in the prediction of varietal performance for different agro-climatic zones. This review also directed its focus on enhancing the genetic gain over time, cost, and resource allocation at various stages of breeding programmes.


Genome ◽  
2010 ◽  
Vol 53 (11) ◽  
pp. 876-883 ◽  
Author(s):  
Ben Hayes ◽  
Mike Goddard

Results from genome-wide association studies in livestock, and humans, has lead to the conclusion that the effect of individual quantitative trait loci (QTL) on complex traits, such as yield, are likely to be small; therefore, a large number of QTL are necessary to explain genetic variation in these traits. Given this genetic architecture, gains from marker-assisted selection (MAS) programs using only a small number of DNA markers to trace a limited number of QTL is likely to be small. This has lead to the development of alternative technology for using the available dense single nucleotide polymorphism (SNP) information, called genomic selection. Genomic selection uses a genome-wide panel of dense markers so that all QTL are likely to be in linkage disequilibrium with at least one SNP. The genomic breeding values are predicted to be the sum of the effect of these SNPs across the entire genome. In dairy cattle breeding, the accuracy of genomic estimated breeding values (GEBV) that can be achieved and the fact that these are available early in life have lead to rapid adoption of the technology. Here, we discuss the design of experiments necessary to achieve accurate prediction of GEBV in future generations in terms of the number of markers necessary and the size of the reference population where marker effects are estimated. We also present a simple method for implementing genomic selection using a genomic relationship matrix. Future challenges discussed include using whole genome sequence data to improve the accuracy of genomic selection and management of inbreeding through genomic relationships.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0241848
Author(s):  
Hyo Jun Lee ◽  
Yoon Ji Chung ◽  
Sungbong Jang ◽  
Dong Won Seo ◽  
Hak Kyo Lee ◽  
...  

It was hypothesized that single-nucleotide polymorphisms (SNPs) extracted from text-mined genes could be more tightly related to causal variant for each trait and that differentially weighting of this SNP panel in the GBLUP model could improve the performance of genomic prediction in cattle. Fitting two GRMs constructed by text-mined SNPs and SNPs except text-mined SNPs from 777k SNPs set (exp_777K) as different random effects showed better accuracy than fitting one GRM (Im_777K) for six traits (e.g. backfat thickness: + 0.002, eye muscle area: + 0.014, Warner–Bratzler Shear Force of semimembranosus and longissimus dorsi: + 0.024 and + 0.068, intramuscular fat content of semimembranosus and longissimus dorsi: + 0.008 and + 0.018). These results can suggest that attempts to incorporate text mining into genomic predictions seem valuable, and further study using text mining can be expected to present the significant results.


2019 ◽  
Author(s):  
Sarah E. Jensen ◽  
Jean Rigaud Charles ◽  
Kebede Muleta ◽  
Peter Bradbury ◽  
Terry Casstevens ◽  
...  

AbstractSuccessful management and utilization of increasingly large genomic datasets is essential for breeding programs to increase genetic gain and accelerate cultivar development. To help with data management and storage, we developed a sorghum Practical Haplotype Graph (PHG) pangenome database that stores all identified haplotypes and variant information for a given set of individuals. We developed two PHGs in sorghum, one with 24 individuals and another with 398 individuals, that reflect the diversity across genic regions of the sorghum genome. 24 founders of the Chibas sorghum breeding program were sequenced at low coverage (0.01x) and processed through the PHG to identify genome-wide variants. The PHG called SNPs with only 5.9% error at 0.01x coverage - only 3% lower than its accuracy when calling SNPs from 8x coverage sequence. Additionally, 207 progeny from the Chibas genomic selection (GS) training population were sequenced and processed through the PHG. Missing genotypes in the progeny were imputed from the parental haplotypes available in the PHG and used for genomic prediction. Mean prediction accuracies with PHG SNP calls range from 0.57-0.73 for different traits, and are similar to prediction accuracies obtained with genotyping-by-sequencing (GBS) or markers from sequencing targeted amplicons (rhAmpSeq). This study provides a proof of concept for using a sorghum PHG to call and impute SNPs from low-coverage sequence data and also shows that the PHG can unify genotype calls from different sequencing platforms. By reducing the amount of input sequence needed, the PHG has the potential to decrease the cost of genotyping for genomic selection, making GS more feasible and facilitating larger breeding populations that can capture maximum recombination. Our results demonstrate that the PHG is a useful research and breeding tool that can maintain variant information from a diverse group of taxa, store sequence data in a condensed but readily accessible format, unify genotypes from different genotyping methods, and provide a cost-effective option for genomic selection for any species.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1591
Author(s):  
Sebastian Michel ◽  
Franziska Löschenberger ◽  
Ellen Sparry ◽  
Christian Ametz ◽  
Hermann Bürstmayr

The availability of cost-efficient genotyping technologies has facilitated the implementation of genomic selection into numerous breeding programs. However, some studies reported a superiority of pedigree over genomic selection in line breeding, and as, aside from systematic record keeping, no additional costs are incurring in pedigree-based prediction, the question about the actual benefit of fingerprinting several hundred lines each year might suggest itself. This study aimed thus on shedding some light on this question by comparing pedigree, genomic, and single-step prediction models using phenotypic and genotypic data that has been collected during a time period of ten years in an applied wheat breeding program. The mentioned models were for this purpose empirically tested in a multi-year forward prediction as well as a supporting simulation study. Given the availability of deep pedigree records, pedigree prediction performed similar to genomic prediction for some of the investigated traits if preexisting information of the selection candidates was available. Notwithstanding, blending both information sources increased the prediction accuracy and thus the selection gain substantially, especially for low heritable traits. Nevertheless, the largest advantage of genomic predictions can be seen for breeding scenarios where such preexisting information is not systemically available or difficult and costly to obtain.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247824
Author(s):  
Morteza Shabannejad ◽  
Mohammad-Reza Bihamta ◽  
Eslam Majidi-Hervan ◽  
Hadi Alipour ◽  
Asa Ebrahimi

The present study aimed to improve the accuracy of genomic prediction of 16 agronomic traits in a diverse bread wheat (Triticum aestivum L.) germplasm under terminal drought stress and well-watered conditions in semi-arid environments. An association panel including 87 bread wheat cultivars and 199 landraces from Iran bread wheat germplasm was planted under two irrigation systems in semi-arid climate zones. The whole association panel was genotyped with 9047 single nucleotide polymorphism markers using the genotyping-by-sequencing method. A number of 23 marker-trait associations were selected for traits under each condition, whereas 17 marker-trait associations were common between terminal drought stress and well-watered conditions. The identified marker-trait associations were mostly single nucleotide polymorphisms with minor allele effects. This study examined the effect of population structure, genomic selection method (ridge regression-best linear unbiased prediction, genomic best-linear unbiased predictions, and Bayesian ridge regression), training set size, and type of marker set on genomic prediction accuracy. The prediction accuracies were low (-0.32) to moderate (0.52). A marker set including 93 significant markers identified through genome-wide association studies with P values ≤ 0.001 increased the genomic prediction accuracy for all traits under both conditions. This study concluded that obtaining the highest genomic prediction accuracy depends on the extent of linkage disequilibrium, the genetic architecture of trait, genetic diversity of the population, and the genomic selection method. The results encouraged the integration of genome-wide association study and genomic selection to enhance genomic prediction accuracy in applied breeding programs.


Author(s):  
Christian R. Werner ◽  
R. Chris Gaynor ◽  
Daniel J. Sargent ◽  
Alessandra Lillo ◽  
Gregor Gorjanc ◽  
...  

AbstractFor genomic selection in clonal breeding programs to be effective, crossing parents should be selected based on genomic predicted cross performance unless dominance is negligible. Genomic prediction of cross performance enables a balanced exploitation of the additive and dominance value simultaneously. Here, we compared different strategies for the implementation of genomic selection in clonal plant breeding programs. We used stochastic simulations to evaluate six combinations of three breeding programs and two parent selection methods. The three breeding programs included i) a breeding program that introduced genomic selection in the first clonal testing stage, and ii) two variations of a two-part breeding program with one and three crossing cycles per year, respectively. The two parent selection methods were i) selection of parents based on genomic estimated breeding values, and ii) selection of parents based on genomic predicted cross performance. Selection of parents based on genomic predicted cross performance produced faster genetic gain than selection of parents based on genomic estimated breeding values because it substantially reduced inbreeding when the dominance degree increased. The two-part breeding programs with one and three crossing cycles per year using genomic prediction of cross performance always produced the most genetic gain unless dominance was negligible. We conclude that i) in clonal breeding programs with genomic selection, parents should be selected based on genomic predicted cross performance, and ii) a two-part breeding program with parent selection based on genomic predicted cross performance to rapidly drive population improvement has great potential to improve breeding clonally propagated crops.


2018 ◽  
Author(s):  
Zhi-Qiang Chen ◽  
John Baison ◽  
Jin Pan ◽  
Bo Karlsson ◽  
Bengt Andersson Gull ◽  
...  

AbstractBackgroundGenomic selection (GS) can increase genetic gain by reducing the length of breeding cycle in forest trees. Here we genotyped 1370 control-pollinated progeny trees from 128 full-sib families in Norway spruce (Picea abies (L.) Karst.), using exome capture as a genotyping platform. We used 116,765 high quality SNPs to develop genomic prediction models for tree height and wood quality traits. We assessed the impact of different genomic prediction methods, genotype-by-environment interaction (G×E), genetic composition, size of the training and validation set, relatedness, and the number of SNPs on the accuracy and predictive ability (PA) of GS.ResultsUsing G matrix slightly altered heritability estimates relative to pedigree-based method. GS accuracies were about 11–14% lower than those based on pedigree-based selection. The efficiency of GS per year varied from 1.71 to 1.78, compared to that of the pedigree-based model if breeding cycle length was halved using GS. Height GS accuracy decreased more than 30% using one site as training for GS prediction to the second site, indicating that G×E for tree height should be accommodated in model fitting. Using half-sib family structure instead of full-sib led a significant reduction in GS accuracy and PA. The full-sib family structure only needed 750 makers to reach similar accuracy and PA as 100,000 markers required for half-sib family, indicating that maintaining the high relatedness in the model improves accuracy and PA. Using 4000–8000 markers in full-sib family structure was sufficient to obtain GS model accuracy and PA for tree height and wood quality traits, almost equivalent to that obtained with all makers.ConclusionsThe study indicates GS would be efficient in reducing generation time of a breeding cycle in conifer tree breeding program that requires a long-term progeny testing. Sufficient number of trees within-family (16 for growth and 12 for wood quality traits) and number of SNPs (8000) are required for GS with full-sib family relationship. GS methods had little impact on GS efficiency for growth and wood quality traits. GS model should incorporate G × E effect when a strong G×E is detected.


Sign in / Sign up

Export Citation Format

Share Document