scholarly journals Genome-wide gene expression regulation as a function of genotype and age in C. elegans

2010 ◽  
Vol 20 (7) ◽  
pp. 929-937 ◽  
Author(s):  
A. Vinuela ◽  
L. B. Snoek ◽  
J. A. G. Riksen ◽  
J. E. Kammenga
Genetics ◽  
2020 ◽  
Vol 215 (1) ◽  
pp. 253-266 ◽  
Author(s):  
Nicole E. Soltis ◽  
Celine Caseys ◽  
Wei Zhang ◽  
Jason A. Corwin ◽  
Susanna Atwell ◽  
...  

In plant–pathogen relations, disease symptoms arise from the interaction of the host and pathogen genomes. Host–pathogen functional gene interactions are well described, whereas little is known about how the pathogen genetic variation modulates both organisms’ transcriptomes. To model and generate hypotheses on a generalist pathogen control of gene expression regulation, we used the Arabidopsis thaliana–Botrytis cinerea pathosystem and the genetic diversity of a collection of 96 B. cinerea isolates. We performed expression-based genome-wide association (eGWA) for each of 23,947 measurable transcripts in Arabidopsis (host), and 9267 measurable transcripts in B. cinerea (pathogen). Unlike other eGWA studies, we detected a relative absence of locally acting expression quantitative trait loci (cis-eQTL), partly caused by structural variants and allelic heterogeneity hindering their identification. This study identified several distantly acting trans-eQTL linked to eQTL hotspots dispersed across Botrytis genome that altered only Botrytis transcripts, only Arabidopsis transcripts, or transcripts from both species. Gene membership in the trans-eQTL hotspots suggests links between gene expression regulation and both known and novel virulence mechanisms in this pathosystem. Genes annotated to these hotspots provide potential targets for blocking manipulation of the host response by this ubiquitous generalist necrotrophic pathogen.


2013 ◽  
Vol 41 (19) ◽  
pp. 8896-8907 ◽  
Author(s):  
Mabrouka Doghman ◽  
Bonald C. Figueiredo ◽  
Marco Volante ◽  
Mauro Papotti ◽  
Enzo Lalli

2017 ◽  
Author(s):  
Mintie Pu ◽  
Minghui Wang ◽  
Wenke Wang ◽  
Satheeja Santhi Velayudhan ◽  
Siu Sylvia Lee

AbstractTri-methylation on histone H3 lysine 4 (H3K4me3) is associated with active gene expression but its regulatory role in transcriptional activation is unclear. Here we used Caenorhabditis elegans to investigate the connection between H3K4me3 and gene expression regulation during aging. We uncovered around 30% of H3K4me3 enriched regions to show significant and reproducible changes with age. We further showed that these age-dynamic H3K4me3 regions largely mark gene-bodies and are acquired during adult stages. We found that these adult-specific age-dynamic H3K4me3 regions are correlated with gene expression changes with age. In contrast, H3K4me3 marking established during developmental stages remained largely stable with age, even when the H3K4me3 associated genes exhibited RNA expression changes during aging. Moreover, we found that global reduction of H3K4me3 levels results in significantly decreased RNA expression of genes that acquire H3K4me3 marking in their gene-bodies during adult stage, suggesting that altered H3K4me3 levels with age could result in age-dependent gene expression changes. Interestingly, the genes with dynamic changes in H3K4me3 and RNA levels with age are enriched for those involved in fatty acid metabolism, oxidation-reduction, and stress response. Therefore, our findings revealed divergent roles of H3K4me3 in gene expression regulation during aging, with important implications on physiological relevance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Divya Mehta ◽  
Karen Grewen ◽  
Brenda Pearson ◽  
Shivangi Wani ◽  
Leanne Wallace ◽  
...  

AbstractMaternal postpartum depression (PPD) is a significant public health concern due to the severe negative impact on maternal and child health and well-being. In this study, we aimed to identify genes associated with PPD. To do this, we investigated genome-wide gene expression profiles of pregnant women during their third trimester of pregnancy and tested the association of gene expression with perinatal depressive symptoms. A total of 137 women from a cohort from the University of North Carolina, USA were assessed. The main phenotypes analysed were Edinburgh Postnatal Depression Scale (EPDS) scores at 2 months postpartum and PPD (binary yes/no) based on an EPDS cutoff of 10. Illumina NextSeq500/550 transcriptomic sequencing from whole blood was analysed using the edgeR package. We identified 71 genes significantly associated with postpartum depression scores at 2 months, after correction for multiple testing at 5% FDR. These included several interesting candidates including TNFRSF17, previously reported to be significantly upregulated in women with PPD and MMP8, a matrix metalloproteinase gene, associated with depression in a genome-wide association study. Functional annotation of differentially expressed genes revealed an enrichment of immune response-related biological processes. Additional analysis of genes associated with changes in depressive symptoms from recruitment to 2 months postpartum identified 66 genes significant at an FDR of 5%. Of these genes, 33 genes were also associated with depressive symptoms at 2 months postpartum. Comparing the results with previous studies, we observed that 15.4% of genes associated with PPD in this study overlapped with 700 core maternal genes that showed significant gene expression changes across multiple brain regions (P = 7.9e-05) and 29–53% of the genes were also associated with estradiol changes in a pharmacological model of depression (P values range = 1.2e-4–2.1e-14). In conclusion, we identified novel genes and validated genes previously associated with oestrogen sensitivity in PPD. These results point towards the role of an altered immune transcriptomic landscape as a vulnerability factor for PPD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Donguk Kim ◽  
Na Yeon Park ◽  
Keunsoo Kang ◽  
Stuart K. Calderwood ◽  
Dong-Hyung Cho ◽  
...  

AbstractArsenic is reportedly a biphasic inorganic compound for its toxicity and anticancer effects in humans. Recent studies have shown that certain arsenic compounds including arsenic hexoxide (AS4O6; hereafter, AS6) induce programmed cell death and cell cycle arrest in human cancer cells and murine cancer models. However, the mechanisms by which AS6 suppresses cancer cells are incompletely understood. In this study, we report the mechanisms of AS6 through transcriptome analyses. In particular, the cytotoxicity and global gene expression regulation by AS6 were compared in human normal and cancer breast epithelial cells. Using RNA-sequencing and bioinformatics analyses, differentially expressed genes in significantly affected biological pathways in these cell types were validated by real-time quantitative polymerase chain reaction and immunoblotting assays. Our data show markedly differential effects of AS6 on cytotoxicity and gene expression in human mammary epithelial normal cells (HUMEC) and Michigan Cancer Foundation 7 (MCF7), a human mammary epithelial cancer cell line. AS6 selectively arrests cell growth and induces cell death in MCF7 cells without affecting the growth of HUMEC in a dose-dependent manner. AS6 alters the transcription of a large number of genes in MCF7 cells, but much fewer genes in HUMEC. Importantly, we found that the cell proliferation, cell cycle, and DNA repair pathways are significantly suppressed whereas cellular stress response and apoptotic pathways increase in AS6-treated MCF7 cells. Together, we provide the first evidence of differential effects of AS6 on normal and cancerous breast epithelial cells, suggesting that AS6 at moderate concentrations induces cell cycle arrest and apoptosis through modulating genome-wide gene expression, leading to compromised DNA repair and increased genome instability selectively in human breast cancer cells.


Sign in / Sign up

Export Citation Format

Share Document