Controlled growth of Gd-Pt surface alloys on Pt(111)

2022 ◽  
Vol 105 (3) ◽  
Author(s):  
Marta Przychodnia ◽  
Michał Hermanowicz ◽  
Emil Sierda ◽  
Micha Elsebach ◽  
Tomasz Grzela ◽  
...  
RSC Advances ◽  
2016 ◽  
Vol 6 (78) ◽  
pp. 74973-74981 ◽  
Author(s):  
Xin Bian ◽  
Qiang Wang ◽  
Xinyan Wang ◽  
Lu Wang ◽  
Wei-qi Li ◽  
...  

Bimetallic alloy is more effective than pure metal for controlled growth of high-quality graphene.


2021 ◽  
Author(s):  
Claire Deville ◽  
Henrik Særkjær Jeppesen ◽  
Vickie McKee ◽  
Nina Lock

Controlled bottom-up synthesis of amorphous coordination polymers with tailored metal coordination is a research field in its infancy. In this study, synthesis control was achieved to selectively prepare one-dimensional (1D)...


2021 ◽  
Vol 3 (7) ◽  
pp. 1865-1886
Author(s):  
Hongyin Hu ◽  
Shuanglong Lu ◽  
Ting Li ◽  
Yue Zhang ◽  
Chenxi Guo ◽  
...  

This article reviews the controlled growth of UMNPs mediated by different types of solid supports and their catalytic properties. The importance of certain structural features of the supports is also discussed.


2021 ◽  
Vol 31 (22) ◽  
pp. 2170154
Author(s):  
Leonard Siebert ◽  
Eder Luna‐Cerón ◽  
Luis Enrique García‐Rivera ◽  
Junsung Oh ◽  
JunHwee Jang ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1246
Author(s):  
Stefan Valkov ◽  
Dimitar Dechev ◽  
Nikolay Ivanov ◽  
Ruslan Bezdushnyi ◽  
Maria Ormanova ◽  
...  

In this study, we present the results of Young’s modulus and coefficient of friction (COF) of Ti–Ta surface alloys formed by electron-beam surface alloying by a scanning electron beam. Ta films were deposited on the top of Ti substrates, and the specimens were then electron-beam surface alloyed, where the beam power was varied from 750 to 1750 W. The structure of the samples was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Young’s modulus was studied by a nanoindentation test. The coefficient of friction was studied by a micromechanical wear experiment. It was found that at 750 W, the Ta film remained undissolved on the top of the Ti, and no alloyed zone was observed. By an increase in the beam power to 1250 and 1750 W, a distinguished alloyed zone is formed, where it is much thicker in the case of 1750 W. The structure of the obtained surface alloys is in the form of double-phase α’and β. In both surface alloys formed by a beam power of 1250 and 1750 W, respectively, Young’s modulus decreases about two times due to different reasons: in the case of alloying by 1250 W, the observed drop is attributed to the larger amount of the β phase, while at 1750 W is it due to the weaker binding forces between the atoms. The results obtained for the COF show that the formation of the Ti–Ta surface alloy on the top of Ti substrate leads to a decrease in the coefficient of friction, where the effect is more pronounced in the case of the formation of Ti–Ta surface alloys by a beam power of 1250 W.


RSC Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1916-1927
Author(s):  
Jianmei Huang ◽  
Qiang Wang ◽  
Pengfei Liu ◽  
Guang-hui Chen ◽  
Yanhui Yang

The evolution of the interface and interaction of h-BN and graphene/h-BN (Gr/h-BN) on Cu(111)–Ni and Ni(111)–Cu surface alloys versus the Ni/Cu atomic percentage on the alloy surface were comparatively studied by DFT-D2, including critical long-range van der Waals forces.


Sign in / Sign up

Export Citation Format

Share Document