Examining fine potential energy effects in high-energy fission dynamics

2013 ◽  
Vol 88 (5) ◽  
Author(s):  
K. Mazurek ◽  
C. Schmitt ◽  
P. N. Nadtochy ◽  
M. Kmiecik ◽  
A. Maj ◽  
...  
2011 ◽  
Vol 63 (8) ◽  
pp. 1765-1771 ◽  
Author(s):  
S. Heubeck ◽  
R. M. de Vos ◽  
R. Craggs

The biological treatment of wastewater could yield high energy fuels such as methane and alcohols, however most conventional treatment systems do not recover this energy potential. With a simple model of the energy yields of various wastewater treatment technologies it is possible to demonstrate how minor shifts in technology selection can lead the industry from being identified as predominantly energy intensive, to being recognised as a source of energy resources. The future potential energy yield is estimated by applying energy yield factors to alternative use scenarios of the same wastewater loads. The method for identifying the energy potential of wastewater was demonstrated for the New Zealand wastewater sector, but can equally be applied to other countries or regions. The model suggests that by using technologies that maximise the recovery of energy from wastewater, the potential energy yield from this sector would be substantially increased (six fold for New Zealand).


1997 ◽  
Vol 101 (23) ◽  
pp. 4283-4289 ◽  
Author(s):  
Galina Chaban ◽  
Mark S. Gordon ◽  
Kiet A. Nguyen

2021 ◽  
Vol 31 (14) ◽  
Author(s):  
M. Katsanikas ◽  
M. Agaoglou ◽  
S. Wiggins

In this work, we analyze the bifurcation of dividing surfaces that occurs as a result of a pitchfork bifurcation of periodic orbits in a two degrees of freedom Hamiltonian System. The potential energy surface of the system that we consider has four critical points: two minima, a high energy saddle and a lower energy saddle separating two wells (minima). In this paper, we study the structure, the range, and the minimum and maximum extent of the periodic orbit dividing surfaces of the family of periodic orbits of the lower saddle as a function of the total energy.


MAUSAM ◽  
2021 ◽  
Vol 65 (1) ◽  
pp. 57-66
Author(s):  
FEIGE FEIGE ◽  
ZAHEER AHMADBABAR ◽  
SHENG LIGUO ◽  
XIEFEIZHI FEIZHI ◽  
YUNCHEN YUNCHEN ◽  
...  

Extreme weather events over Asia particularly in Pakistan are becoming more frequent in the present decade or so. This is contributing to the ever increasing human suffering of the region. In this study the whole energy parameter E from atmospheric energetic theory is derived. The characteristics of atmospheric energy conversion during the heavy rainfall in Pakistan for the period 27-29 July, 2010 are also discussed. The results show that due to the impact of the atmospheric circulation and terrain conditions, the kinetic energy is converted into potential energy, in the form of standing wave, during heavy rainfall development period. The conversion between kinetic and potential energy is significant in heavy rainfall spell. High energy value corresponds to the heavy rainfall region.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Arne Schobert ◽  
Jan Berges ◽  
Tim Wehling ◽  
Erik van Loon

Charge-density waves are responsible for symmetry-breaking displacements of atoms and concomitant changes in the electronic structure. Linear response theories, in particular density-functional perturbation theory, provide a way to study the effect of displacements on both the total energy and the electronic structure based on a single ab initio calculation. In downfolding approaches, the electronic system is reduced to a smaller number of bands, allowing for the incorporation of additional correlation and environmental effects on these bands. However, the physical contents of this downfolded model and its potential limitations are not always obvious. Here, we study the potential-energy landscape and electronic structure of the Su-Schrieffer-Heeger (SSH) model, where all relevant quantities can be evaluated analytically. We compare the exact results at arbitrary displacement with diagrammatic perturbation theory both in the full model and in a downfolded effective single-band model, which gives an instructive insight into the properties of downfolding. An exact reconstruction of the potential-energy landscape is possible in a downfolded model, which requires a dynamical electron-biphonon interaction. The dispersion of the bands upon atomic displacement is also found correctly, where the downfolded model by construction only captures spectral weight in the target space. In the SSH model, the electron-phonon coupling mechanism involves exclusively hybridization between the low- and high-energy bands and this limits the computational efficiency gain of downfolded models.


2016 ◽  
Author(s):  
Anthony N. Fresco

There are reports in the literature that the lives of 4 billion people are at risk either now or in the foreseeable future, and including even 130 million US citizens, mostly in the western states of California and surroundings and in Texas and Florida as being subject to water scarcity primarily due to depletion of aquifers and ground water and losses due to evaporation. 1, 2, 3 At the same time, according to the National Oceanic and Atmospheric Administration (NOAA), there is strong evidence that global sea level is now rising at an increased rate and will continue to rise during this century.4 Climate scientists at the Potsdam Institute of Climate Impact Research published a study in the journal Natural Hazards and Earth System Sciences5 that found that the economic costs of sea level rise increase more quickly than sea levels themselves. Although fresh water is scarce, obviously the oceans are virtually an infinite source of water. Rather than trying to implement difficult fresh water usage restrictions, the best solution to the sea level rise and fresh water scarcity would be to cheaply and efficiently convert sea water to fresh water and to pump the rising sea water level inland to compensate for the underground aquifer depletion. The main problem with desalination has always been, and continues to be, the high energy consumption and operating cost. Similarly, efforts in the past to transport fresh water from northern latitudes have faced the difficulty of high energy costs for pumping water over long distances. Solute ion linear alignment propulsion was presented in ASME ES2010-903966. Solute ion linear alignment is a process in which potential energy of the electrostatic fields of like charged solute ions is converted to kinetic energy. The current paper presents factors showing that solute ion linear alignment as a power generation method by flash distillation7, and which normally releases no carbon emissions, could in fact be the only way feasible to cheaply and efficiently convert sea water to fresh water and pump the rising sea water level inland to compensate for the underground aquifer depletion. Since solute ion linear alignment is based on the principle of capacitive deionization (CDI), anomalies concerning CDI are discussed. For example, for opposite electrodes separated by 1 mm and subject to a differential voltage of 1.5 volts, the resulting charge densities on opposite electrodes of over 10 Farads/gram and material densities, e.g., carbon nanofoam, of 0.5 grams/cm2, the resulting force between the positively charged ions on one electrode and the negatively charged ions on the other electrode is calculated to be in the range of 1015 Newtons based on Coulomb’s Law. The stability of charge densities in the range of 10 Coulombs/cm3 is also discussed in view of the potential energy and resulting forces of such charge densities with consideration of possible differences in dielectric properties in solids versus liquids for like-charged conditions. An analysis of the power requirements for the CDI charge absorption and regeneration cycle is compared to the potential energy available from linear alignment to show that the linear alignment process is expected to be a net energy gain process in the same category as combustion, which involves electron transfer, nuclear fission, which is the electrostatic repulsion of the protons in the nucleus, and nuclear fusion, which is caused by attraction of the nuclear force.


Sign in / Sign up

Export Citation Format

Share Document