scholarly journals Dynamical system analysis of Randall-Sundrum model with tachyon field on the brane

2020 ◽  
Vol 101 (10) ◽  
Author(s):  
A. Ravanpak ◽  
G. F. Fadakar
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ali Osman Yılmaz ◽  
Ertan Güdekli

AbstractWe investigate Friedmann–Lamaitre–Robertson–Walker (FLRW) models with modified Chaplygin gas and cosmological constant, using dynamical system methods. We assume $$p=(\gamma -1)\mu -\dfrac{A}{\mu ^\alpha }$$ p = ( γ - 1 ) μ - A μ α as equation of state where $$\mu$$ μ is the matter-energy density, p is the pressure, $$\alpha$$ α is a parameter which can take on values $$0<\alpha \le 1$$ 0 < α ≤ 1 as well as A and $$\gamma$$ γ are positive constants. We draw the state spaces and analyze the nature of the singularity at the beginning, as well as the fate of the universe in the far future. In particular, we address the question whether there is a solution which is stable for all the cases.


2009 ◽  
Vol 29 (3) ◽  
pp. 370-376 ◽  
Author(s):  
Sheri P. Silfies ◽  
Anand Bhattacharya ◽  
Scott Biely ◽  
Sue S. Smith ◽  
Simon Giszter

2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Soumya Chakraborty ◽  
Sudip Mishra ◽  
Subenoy Chakraborty

AbstractA cosmological model having matter field as (non) interacting dark energy (DE) and baryonic matter and minimally coupled to gravity is considered in the present work with flat FLRW space time. The DE is chosen in the form of a three-form field while radiation and dust (i.e; cold dark matter) are the baryonic part. The cosmic evolution is studied through dynamical system analysis of the autonomous system so formed from the evolution equations by suitable choice of the dimensionless variables. The stability of the non-hyperbolic critical points are examined by Center manifold theory and possible bifurcation scenarios have been examined.


1977 ◽  
Vol 10 (2) ◽  
pp. 44-50 ◽  
Author(s):  
C. McCorkell ◽  
N. Wilson

Dynamical system analysis is included in undergraduate courses in the Northern Ireland Polytechnic, as part of a presentation of general engineering methodology and more particularly, accompanied by synthesis techniques, in control options at final year honours level. Such is the extent of the computational requirement, necessary for a non-trivial treatment, that steps have been taken to introduce computer usage where possible. Included is information on the initial stage of a project undertaken to provide for the computational needs of undergraduates involved in dynamical problems in the laboratory.


2018 ◽  
Vol 363 (10) ◽  
Author(s):  
A. Savaş Arapoğlu ◽  
Ezgi Yalçınkaya ◽  
A. Emrah Yükselci

2019 ◽  
Vol 100 (8) ◽  
Author(s):  
Sebastian Bahamonde ◽  
Mihai Marciu ◽  
Prabir Rudra

2020 ◽  
Vol 35 (22) ◽  
pp. 2050124
Author(s):  
Parth Shah ◽  
Gauranga C. Samanta

In this work we try to understand the late-time acceleration of the universe by assuming some modification in the geometry of the space and using dynamical system analysis. This technique allows to understand the behavior of the universe without analytically solving the field equations. We study the acceleration phase of the universe and stability properties of the critical points which could be compared with observational results. We consider an asymptotic behavior of two particular models [Formula: see text] and [Formula: see text] with [Formula: see text], [Formula: see text], [Formula: see text] for the study. As a first case we fix the value of [Formula: see text] and analyze for all [Formula: see text]. Later as second case, we fix the value of [Formula: see text] and calculation are done for all [Formula: see text]. At the end all the calculations for the generalized case have been shown and results have been discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document