scholarly journals Accretion of a Vlasov gas onto a black hole from a sphere of finite radius and the role of angular momentum

2021 ◽  
Vol 104 (8) ◽  
Author(s):  
Aldo Gamboa ◽  
Carlos Gabarrete ◽  
Paola Domínguez-Fernández ◽  
Darío Núñez ◽  
Olivier Sarbach
2013 ◽  
Vol 28 (11) ◽  
pp. 1350037 ◽  
Author(s):  
O. B. ZASLAVSKII

We show that recent observation made by Grib and Pavlov, [A. A. Grib and Yu. V. Pavlov, Europhys. Lett.101, 20004 (2013)] for the Kerr black hole is valid in the general case of rotating axially symmetric metric. Namely, collision of two particles in the ergosphere leads to indefinite growth of the energy in the center-of-mass frame, provided the angular momentum of one of the two particles is negative and increases without limit for a fixed energy at infinity. General approach enabled us to elucidate why the role of the ergosphere is crucial in this process.


2013 ◽  
Vol 9 (S303) ◽  
pp. 424-426
Author(s):  
V. Karas ◽  
J. Hamerský

AbstractRunaway instability operates in accretion tori around black holes, where it affects systems close to the critical (cusp overflowing) configuration. The runaway effect depends on the radial profile l(R) of the angular momentum distribution of the fluid, on the dimension-less spin a of the central black hole (|a| ≤ 1), and other factors, such as self-gravity. Here we discuss the role of runaway instability within a framework of an axially symmetric model of perfect fluid endowed with a purely toroidal magnetic field.


2009 ◽  
Vol 24 (23) ◽  
pp. 1829-1834 ◽  
Author(s):  
WONTAE KIM ◽  
EDWIN J. SON

A chiral black hole can be defined by the three-dimensional pure gravitational Chern–Simons action as an independent gravitational theory. The third-order derivative of the Cotton tensor gives a dimensional constant which plays a role of the cosmological constant. The handedness of angular momentum depends on the signature of the Chern–Simons coefficient. Even in the massless black hole which corresponds to the static black hole, it has a nonvanishing angular momentum. We also discuss three different entropies depending on the methods of Wald, Cardy and 't Hooft.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Éanna É. Flanagan

Abstract As a black hole evaporates, each outgoing Hawking quantum carries away some of the black holes asymptotic charges associated with the extended Bondi-Metzner-Sachs group. These include the Poincaré charges of energy, linear momentum, intrinsic angular momentum, and orbital angular momentum or center-of-mass charge, as well as extensions of these quantities associated with supertranslations and super-Lorentz transformations, namely supermomentum, superspin and super center-of-mass charges (also known as soft hair). Since each emitted quantum has fluctuations that are of order unity, fluctuations in the black hole’s charges grow over the course of the evaporation. We estimate the scale of these fluctuations using a simple model. The results are, in Planck units: (i) The black hole position has a uncertainty of $$ \sim {M}_i^2 $$ ∼ M i 2 at late times, where Mi is the initial mass (previously found by Page). (ii) The black hole mass M has an uncertainty of order the mass M itself at the epoch when M ∼ $$ {M}_i^{2/3} $$ M i 2 / 3 , well before the Planck scale is reached. Correspondingly, the time at which the evaporation ends has an uncertainty of order $$ \sim {M}_i^2 $$ ∼ M i 2 . (iii) The supermomentum and superspin charges are not independent but are determined from the Poincaré charges and the super center-of-mass charges. (iv) The supertranslation that characterizes the super center-of-mass charges has fluctuations at multipole orders l of order unity that are of order unity in Planck units. At large l, there is a power law spectrum of fluctuations that extends up to l ∼ $$ {M}_i^2/M $$ M i 2 / M , beyond which the fluctuations fall off exponentially, with corresponding total rms shear tensor fluctuations ∼ MiM−3/2.


1997 ◽  
Vol 163 ◽  
pp. 620-625 ◽  
Author(s):  
H. Ford ◽  
Z. Tsvetanov ◽  
L. Ferrarese ◽  
G. Kriss ◽  
W. Jaffe ◽  
...  

AbstractHST images have led to the discovery that small (r ~ 1″ r ~ 100 – 200 pc), well-defined, gaseous disks are common in the nuclei of elliptical galaxies. Measurements of rotational velocities in the disks provide a means to measure the central mass and search for massive black holes in the parent galaxies. The minor axes of these disks are closely aligned with the directions of the large–scale radio jets, suggesting that it is angular momentum of the disk rather than that of the black hole that determines the direction of the radio jets. Because the disks are directly observable, we can study the disks themselves, and investigate important questions which cannot be directly addressed with observations of the smaller and unresolved central accretion disks. In this paper we summarize what has been learned to date in this rapidly unfolding new field.


2019 ◽  
Vol 15 (S359) ◽  
pp. 312-317
Author(s):  
Francoise Combes

AbstractGas fueling AGN (Active Galaxy Nuclei) is now traceable at high-resolution with ALMA (Atacama Large Millimeter Array) and NOEMA (NOrthern Extended Millimeter Array). Dynamical mechanisms are essential to exchange angular momentum and drive the gas to the super-massive black hole. While at 100pc scale, the gas is sometimes stalled in nuclear rings, recent observations reaching 10pc scale (50mas), may bring smoking gun evidence of fueling, within a randomly oriented nuclear gas disk. AGN feedback is also observed, in the form of narrow and collimated molecular outflows, which point towards the radio mode, or entrainment by a radio jet. Precession has been observed in a molecular outflow, indicating the precession of the radio jet. One of the best candidates for precession is the Bardeen-Petterson effect at small scale, which exerts a torque on the accreting material, and produces an extended disk warp. The misalignment between the inner and large-scale disk, enhances the coupling of the AGN feedback, since the jet sweeps a large part of the molecular disk.


2003 ◽  
Vol 208 ◽  
pp. 427-428
Author(s):  
D. Molteni ◽  
F. Fauci ◽  
G. Gerardi ◽  
M. A. Valenza

Results of 3D numerical simulations of the gas transfer in close binary systems show that it is possible the production of accretion streams having low specific angular momentum in a region close to the accreting star. These streams are mainly placed above the orbital disc. The eventual formation of such bulges and shock heated flows is interesting in the context of advection dominated solutions and for the explanation of spectral properties of the Black Hole candidates in binary systems. We set up a parallelized version of 3D S.P.H. code, using domain decomposion. with increasing spatial resolution around the compact star.


2019 ◽  
Vol 14 (S351) ◽  
pp. 524-527
Author(s):  
Maria A. Tiongco ◽  
Enrico Vesperini ◽  
Anna Lisa Varri

AbstractWe present several results of the study of the evolution of globular clusters’ internal kinematics, as driven by two-body relaxation and the interplay between internal angular momentum and the external Galactic tidal field. Via a large suite of N-body simulations, we explored the three-dimensional velocity space of tidally perturbed clusters, by characterizing their degree of velocity dispersion anisotropy and their rotational properties. These studies have shown that a cluster’s kinematical properties contain distinct imprints of the cluster’s initial structural properties, dynamical history, and tidal environment. Building on this fundamental understanding, we then studied the dynamics of multiple stellar populations in globular clusters, with attention to the largely unexplored role of angular momentum.


Sign in / Sign up

Export Citation Format

Share Document