scholarly journals Electrical conductivity and Hall conductivity of a hot and dense hadron gas in a magnetic field: A relaxation time approach

2019 ◽  
Vol 99 (9) ◽  
Author(s):  
Arpan Das ◽  
Hiranmaya Mishra ◽  
Ranjita K. Mohapatra
1983 ◽  
Vol 38 (5) ◽  
pp. 593-594 ◽  
Author(s):  
W. D. Basler ◽  
I. V. Murin ◽  
S. V. Chernov

The diffusion of fluorine in KSn2F5 has been studied by T1 and T2 relaxation time measurements of 19F NMR (200-500 K) and pulsed magnetic Field gradient tech­niques (390-480 K). Near 423 K a sharp transition into the superionic state has been found, the fluorine diffusion increasing by a factor of 4 within a range of 3 K. Conduc­tivity measurements only show a change in the activation energy.


1981 ◽  
Vol 42 (C5) ◽  
pp. C5-689-C5-693
Author(s):  
J. D.N. Cheeke ◽  
G. Madore ◽  
A. Hikata

2019 ◽  
Vol 50 (3) ◽  
pp. 333-345 ◽  
Author(s):  
Danmei Sun ◽  
Meixuan Chen ◽  
Symon Podilchak ◽  
Apostolos Georgiadis ◽  
Qassim S Abdullahi ◽  
...  

Smart and interactive textiles have been attracted great attention in recent years. This research explored three different techniques and processes in developing textile-based conductive coils that are able to embed in a garment layer. Coils made through embroidery and screen printing have good dimensional stability, although the resistance of screen printed coil is too high due to the low conductivity of the print ink. Laser cut coil provided the best electrical conductivity; however, the disadvantage of this method is that it is very difficult to keep the completed coil to the predetermined shape and dimension. The tested results show that an electromagnetic field has been generated between the textile-based conductive coil and an external coil that is directly powered by electricity. The magnetic field and electric field worked simultaneously to complete the wireless charging process.


2017 ◽  
Vol 31 (12) ◽  
pp. 1750134 ◽  
Author(s):  
Oktay Samadov ◽  
Oktay Alakbarov ◽  
Arzu Najafov ◽  
Samir Samadov ◽  
Nizami Mehdiyev ◽  
...  

The dielectric and impedance spectra of TlGaSe2 crystals have been studied at temperatures in the 100–500 K range in the alternating current (AC [Formula: see text]1 V). It has been shown that the conductivity of TlGaSe2 crystals is mainly an ionic characteristic at temperatures above 400 K. The well-defined peak at the frequency dependence of the imaginary part of impedance [Formula: see text] is observed in the 215–500 K temperature range. In a constant field, there occurs a significant decrease in electrical conductivity [Formula: see text] in due course. The ionic contribution to conductivity (76% at [Formula: see text]) has been estimated from a kinetic change in electrical conductivity [Formula: see text] under the influence of a constant electric field. The diagram analysis in a complex plane [Formula: see text] has been conducted by applying the method of an equivalent circuit of the substation. It has been determined that the average relaxation time of the electric module of the sample is [Formula: see text].


2014 ◽  
Vol 44 (4) ◽  
pp. 293-312 ◽  
Author(s):  
Tomáš Šoltis ◽  
Ján Šimkanin

Abstract We present an investigation of dynamo in a simultaneous dependence on the non-uniform stratification, electrical conductivity of the inner core and the Prandtl number. Computations are performed using the MAG dynamo code. In all the investigated cases, the generated magnetic fields are dipolar. Our results show that the dynamos, especially magnetic field structures, are independent in our investigated cases on the electrical conductivity of the inner core. This is in agreement with results obtained in previous analyses. The influence of non-uniform stratification is for our parameters weak, which is understandable because most of the shell is unstably stratified, and the stably stratified region is only a thin layer near the CMB. The teleconvection is not observed in our study. However, the influence of the Prandtl number is strong. The generated magnetic fields do not become weak in the polar regions because the magnetic field inside the tangent cylinder is always regenerated due to the weak magnetic diffusion.


1993 ◽  
Vol 07 (19) ◽  
pp. 3415-3421 ◽  
Author(s):  
ALEXANDRE S. ROZHAVSKY

A field description of spin-density-wave (SDW) in a quasi-two-dimensional metal with open Fermi surface in magnetic field, is proposed. The SDW transition temperature, T c (H), and the Hall conductivity σxy, are calculated. The dependence T c (H) is found to be different from that of the Bardeen-Cooper-Schrieffer model, in particular, a threshold field, H c , found its natural explanation. It is proved that the quantized Hall conductivity arises from the chiral anomaly terms in the effective action provided there is pinning of chemical potential in the gap of extended states.


Sign in / Sign up

Export Citation Format

Share Document