scholarly journals Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations

2010 ◽  
Vol 82 (5) ◽  
Author(s):  
Anatoliy Vorobev
2017 ◽  
Vol 12 (2) ◽  
pp. 111-118
Author(s):  
Vladimir Popov

Under study is the applicability of the high-frequency electromagnetic field impulse for metal heating and melting with a view to its subsequent alloying. The processes of heating, phase transition, heat and mass transfer in the molten metal, solidification of the melt are considered with the aid the proposed mathematical model. The substrate surface is covered with a layer of alloying substances. The distribution of the electromagnetic energy in the metal is described by empirical formulas. Melting and solidification of the metal is considered at the Stephan’s approximation. The flow in the liquid is described by the Navier – Stokes equations in the Boussinesq approximation. According to the results of numerical experiments, the flow structure in the melt and distribution of the alloying substances was evaluated versus the characteristics of induction heating


2018 ◽  
Vol 855 ◽  
pp. 43-66 ◽  
Author(s):  
Ke Wu ◽  
Bruno D. Welfert ◽  
Juan M. Lopez

The dynamic response to shear of a fluid-filled square cavity with stable temperature stratification is investigated numerically. The shear is imposed by the constant translation of the top lid, and is quantified by the associated Reynolds number. The stratification, quantified by a Richardson number, is imposed by maintaining the temperature of the top lid at a higher constant temperature than that of the bottom, and the side walls are insulating. The Navier–Stokes equations under the Boussinesq approximation are solved, using a pseudospectral approximation, over a wide range of Reynolds and Richardson numbers. Particular attention is paid to the dynamical mechanisms associated with the onset of instability of steady state solutions, and to the complex and rich dynamics occurring beyond.


Author(s):  
V.N. Popov ◽  
A.N. Cherepanov

The purpose of the research was to numerically simulate the processes when melting drops fall on a substrate. The paper deals with the solidification on the metal surface of a binary aluminum alloy modified by activated refractory nanosized particles, which are the centers of crystalline phase nucleation. We formulated a mathematical model which describes the thermo- and hydrodynamic phenomena in the drop upon interaction with a solid substrate, heterogeneous nucleation during melt cooling, and subsequent crystallization. The flow in a liquid is described by the Navier --- Stokes equations in the Boussinesq approximation. The position of the free boundary of the melt is fixed by marker particles moving with the local liquid velocity. On the melt --- substrate contact surface, thermal resistance is taken into account. The hydrodynamic problem is considered under conditions of crystallization of molten metal. The temperature conditions and the kinetics of the growth of the solid phase in the solidifying aluminum alloy are described for various sizes of formed splats. Satisfactory agreement was found between the shape of the splat obtained by the results of numerical simulation and the available experimental data. The adequacy of the crystallization model in the presence of ultradisperse refractory particles in a binary alloy is confirmed. It was determined that, regardless of the size of the drop, bulk crystallization of the metal takes place. It was found that at a high rate of collision of a drop with a substrate during the melt spreading, a small fraction of the solid phase can be formed.


2020 ◽  
Vol 221 (2) ◽  
pp. 1264-1280
Author(s):  
Rene Gassmöller ◽  
Juliane Dannberg ◽  
Wolfgang Bangerth ◽  
Timo Heister ◽  
Robert Myhill

SUMMARY Mantle convection and long-term lithosphere dynamics in the Earth and other planets can be treated as the slow deformation of a highly viscous fluid, and as such can be described using the compressible Navier–Stokes equations. Since on Earth-sized planets the influence of compressibility is not a dominant effect, density deviations from a reference profile are at most on the order of a few percent and using the full governing equations poses numerical challenges, most modelling studies have simplified the governing equations. Common approximations assume a temporally constant, but depth-dependent reference profile for the density (the anelastic liquid approximation), or drop compressibility altogether and use a constant reference density (the Boussinesq approximation). In most previous studies of mantle convection and crustal dynamics, one can assume that the error introduced by these approximations was small compared to the errors that resulted from poorly constrained material behaviour and limited numerical accuracy. However, as model parametrizations have become more realistic, and model resolution has improved, this may no longer be the case and the error due to using simplified conservation equations might no longer be negligible: while such approximations may be reasonable for models of mantle plumes or slabs traversing the whole mantle, they may be unsatisfactory for layered materials experiencing phase transitions or materials undergoing significant heating or cooling. For example, at boundary layers or close to dynamically changing density gradients, the error arising from the use of the aforementioned compressibility approximations can be the dominant error source, and common approximations may fail to capture the physical behaviour of interest. In this paper, we discuss new formulations of the continuity equation that include dynamic density variations due to temperature, pressure and composition without using a reference profile for the density. We quantify the improvement in accuracy relative to existing formulations in a number of benchmark models and evaluate for which practical applications these effects are important. Finally, we consider numerical aspects of the new formulations. We implement and test these formulations in the freely available community software aspect, and use this code for our numerical experiments.


2013 ◽  
Vol 733 ◽  
pp. 245-267 ◽  
Author(s):  
A. Karimi ◽  
A. M. Ardekani

AbstractBioconvection is an important phenomenon in aquatic environments, affecting the spatial distribution of motile micro-organisms and enhancing mixing within the fluid. However, stratification arising from thermal or solutal gradients can play a pivotal role in suppressing the bioconvective flows, leading to the aggregation of micro-organisms and growth of their patchiness. We investigate the combined effects by considering gyrotactic motility where the up-swimming cells are directed by the balance of the viscous and gravitational torques. To study this system, we employ a continuum model consisting of Navier–Stokes equations with the Boussinesq approximation coupled with two conservation equations for the concentration of cells and stratification agent. We present a linear stability analysis to determine the onset of bioconvection for different flow parameters. Also, using large-scale numerical simulations, we explore different regimes of the flow by varying the corresponding boundary conditions and dimensionless variables such as Rayleigh number and Lewis number ($\mathit{Le}$) and we show that the cell distribution can be characterized using the ratio of the buoyancy forces as the determinant parameter when $\mathit{Le}\lt 1$ and the boundaries are insulated. But, in thermally stratified fluids corresponding to $\mathit{Le}\gt 1$, temperature gradients are demonstrated to have little impact on the bioconvective plumes provided that the walls are thermally insulated. In addition, we analyse the dynamical behaviour of the system in the case of persistent pycnoclines corresponding to constant salinity boundary conditions and we discuss the associated inhibition threshold of bioconvection in the light of the stability of linearized solutions.


1975 ◽  
Vol 42 (3) ◽  
pp. 575-579 ◽  
Author(s):  
J. C. Chien ◽  
J. A. Schetz

The steady, three-dimensional, incompressible Navier-Stokes equations written in terms of velocity, vorticity, and temperature are solved numerically for channel flows and a jet in a cross flow. Upwind differencing of the convection term was used in the computation for convergence and simplicity. Comparisons were made with experimental results for laminar flow in the entrance region of a square channel, and good agreement was obtained. The method was also applied to a turbulent, buoyant jet in a cross-flow problem with the Boussinesq approximation and a constant Prandtl eddy viscosity model. Good agreement with experiment was obtained in this case also.


2007 ◽  
Vol 12 (1) ◽  
pp. 143-156
Author(s):  
Jajanek Sokolowsky

Two‐fluid channel flows arise in different kinds of coating technologies. The corresponding mathematical models represent two‐dimensional free boundary value problems for the Navier‐Stokes equations or their modifications. In this paper we are concerned with the so‐called Boussinesq‐approximation of the coupled heat‐ and mass transfer. Thermocapillary convection is included. The solvability of two related stationary problems is discussed. The solution techniques of both problems are quite different. The obtained results generalize previous results for similar isothermal problems.


2014 ◽  
Vol 136 (9) ◽  
Author(s):  
J. Griffond ◽  
B. J. Gréa ◽  
O. Soulard

In this paper, we propose a kind of buoyancy-driven flow leading to unstably stratified homogeneous (USH) turbulence. This approach is developed in the context of incompressible Navier–Stokes equations under Boussinesq approximation. We show that USH turbulence is a valuable tool for understanding and modeling turbulent mixing induced by Rayleigh-Taylor (RT) instability. It is a much simpler configuration than “RT turbulence” which is in fact inhomogeneous. Thus, it gives insights in the basic mechanisms of buoyancy-driven turbulence, namely the interplay between buoyancy production, nonlinearities and dissipation. Besides, despite their differences both types of turbulence share very similar features for the large scale characteristics as well as for the inertial range spectrum structure.


Author(s):  
Ekaterina V. Rezanova

The paper considers the flow in a three-layer system "liquid–liquid–gas" in a horizontal chan- nel with solid impermeable walls.The evaporation process at the thermocapillary interface of the liquid and gas is taken into account. The Soret and Dufour effects are taken into account in the upper layer filled with a gas-vapor mixture. The system of Navier-Stokes equations in the Boussinesq approximation is used as a mathematical model. A temperature regime is set on the channel walls. Liquid evaporation is modeled using the conditions at the liquid-gas interface. Exact solution of a special type describing the flow in a three-layer system is constructed. The velocity profiles are presented on the example of the "silicone oil–water–air" system for various values of gas flow rate, longitudinal temperature gradients at the system boundaries, thicknesses of liquid and gas-vapor layers


Sign in / Sign up

Export Citation Format

Share Document