scholarly journals On formulations of compressible mantle convection

2020 ◽  
Vol 221 (2) ◽  
pp. 1264-1280
Author(s):  
Rene Gassmöller ◽  
Juliane Dannberg ◽  
Wolfgang Bangerth ◽  
Timo Heister ◽  
Robert Myhill

SUMMARY Mantle convection and long-term lithosphere dynamics in the Earth and other planets can be treated as the slow deformation of a highly viscous fluid, and as such can be described using the compressible Navier–Stokes equations. Since on Earth-sized planets the influence of compressibility is not a dominant effect, density deviations from a reference profile are at most on the order of a few percent and using the full governing equations poses numerical challenges, most modelling studies have simplified the governing equations. Common approximations assume a temporally constant, but depth-dependent reference profile for the density (the anelastic liquid approximation), or drop compressibility altogether and use a constant reference density (the Boussinesq approximation). In most previous studies of mantle convection and crustal dynamics, one can assume that the error introduced by these approximations was small compared to the errors that resulted from poorly constrained material behaviour and limited numerical accuracy. However, as model parametrizations have become more realistic, and model resolution has improved, this may no longer be the case and the error due to using simplified conservation equations might no longer be negligible: while such approximations may be reasonable for models of mantle plumes or slabs traversing the whole mantle, they may be unsatisfactory for layered materials experiencing phase transitions or materials undergoing significant heating or cooling. For example, at boundary layers or close to dynamically changing density gradients, the error arising from the use of the aforementioned compressibility approximations can be the dominant error source, and common approximations may fail to capture the physical behaviour of interest. In this paper, we discuss new formulations of the continuity equation that include dynamic density variations due to temperature, pressure and composition without using a reference profile for the density. We quantify the improvement in accuracy relative to existing formulations in a number of benchmark models and evaluate for which practical applications these effects are important. Finally, we consider numerical aspects of the new formulations. We implement and test these formulations in the freely available community software aspect, and use this code for our numerical experiments.

1996 ◽  
Vol 118 (2) ◽  
pp. 335-340 ◽  
Author(s):  
Mohamed Selmi

This paper is concerned with the solution of the 3-D-Navier-Stokes equations describing the steady motion of a viscous fluid inside a partially filled spinning and coning cylinder. The cylinder contains either a single fluid of volume less than that of the cylinder or a central rod and a single fluid of combined volume (volume of the rod plus volume of the fluid) equal to that of the cylinder. The cylinder rotates about its axis at the spin rate ω and rotates about an axis that passes through its center of mass at the coning rate Ω. In practical applications, as in the analysis and design of liquid-filled projectiles, the parameter ε = τ sin θ, where τ = Ω/ω and θ is the angle between spin axis and coning axis, is small. As a result, linearization of the Navier-Stokes equations with this parameter is possible. Here, the full and linearized Navier-Stokes equations are solved by a spectral collocation method to investigate the nonlinear effects on the moments caused by the motion of the fluid inside the cylinder. In this regard, it has been found that nonlinear effects are negligible for τ ≈ 0.1, which is of practical interest to the design of liquid-filled projectiles, and the solution of the linearized Navier-Stokes equations is adequate for such a case. However, as τ increases, nonlinear effects increase, and become significant as ε surpasses about 0.1. In such a case, the nonlinear problem must be solved. Complete details on how to solve such a problem is presented.


1997 ◽  
Vol 52 (4) ◽  
pp. 358-368 ◽  
Author(s):  
Michio Nishida ◽  
Masashi Matsumotob

Abstract • This paper describes a computational study of the thermal and chemical nonequilibrium occuring in a rapidly expanding flow of high-temperature air transported as a free jet from an orifice into low-density stationary air. Translational, rotational, vibrational and electron temperatures are treated separately, and in particular the vibrational temperatures are individually treated; a multi-vibrational temperature model is adopted. The governing equations are axisymmetric Navier-Stokes equations coupled with species vibrational energy, electron energy and species mass conservation equations. These equations are numerically solved, using the second order upwind TVD scheme of the Harten-Yee type. The calculations were carried out for two different orifice temperatures and also two different orifice diameters to investigate the effects of such parameters on the structure of a nonequilibrium free jet.


Author(s):  
Wolfgang Höhn

During the design of the compressor and turbine stages of today’s aeroengines, aerodynamically induced vibrations become increasingly important since higher blade load and better efficiency are desired. In this paper the development of a method based on the unsteady, compressible Navier-Stokes equations in two dimensions is described in order to study the physics of flutter for unsteady viscous flow around cascaded vibrating blades at stall. The governing equations are solved by a finite difference technique in boundary fitted coordinates. The numerical scheme uses the Advection Upstream Splitting Method to discretize the convective terms and central differences discretizing the viscous terms of the fully non-linear Navier-Stokes equations on a moving H-type mesh. The unsteady governing equations are explicitly and implicitly marched in time in a time-accurate way using a four stage Runge-Kutta scheme on a parallel computer or an implicit scheme of the Beam-Warming type on a single processor. Turbulence is modelled using the Baldwin-Lomax turbulence model. The blade flutter phenomenon is simulated by imposing a harmonic motion on the blade, which consists of harmonic body translation in two directions and a rotation, allowing an interblade phase angle between neighboring blades. Non-reflecting boundary conditions are used for the unsteady analysis at inlet and outlet of the computational domain. The computations are performed on multiple blade passages in order to account for nonlinear effects. A subsonic massively stalled unsteady flow case in a compressor cascade is studied. The results, compared with experiments and the predictions of other researchers, show reasonable agreement for inviscid and viscous flow cases for the investigated flow situations with respect to the Steady and unsteady pressure distribution on the blade in separated flow areas as well as the aeroelastic damping. The results show the applicability of the scheme for stalled flow around cascaded blades. As expected the viscous and inviscid computations show different results in regions where viscous effects are important, i.e. in separated flow areas. In particular, different predictions for inviscid and viscous flow for the aerodynamic damping for the investigated flow cases are found.


It is shown that the boundary layer approximation to the flow of a viscous fluid past a flat plate of length l , generally valid near the plate when the Reynolds number Re is large, fails within a distance O( lRe -3/4 ) of the trailing edge. The appropriate governing equations in this neighbourhood are the full Navier- Stokes equations. On the basis of Imai (1966) these equations are linearized with respect to a uniform shear and are then completely solved by means of a Wiener-Hopf integral equation. The solution so obtained joins smoothly on to that of the boundary layer for a flat plate upstream of the trailing edge and for a wake downstream of the trailing edge. The contribution to the drag coefficient is found to be O ( Re -3/4 ) and the multiplicative constant is explicitly worked out for the linearized equations.


2017 ◽  
Vol 12 (2) ◽  
pp. 111-118
Author(s):  
Vladimir Popov

Under study is the applicability of the high-frequency electromagnetic field impulse for metal heating and melting with a view to its subsequent alloying. The processes of heating, phase transition, heat and mass transfer in the molten metal, solidification of the melt are considered with the aid the proposed mathematical model. The substrate surface is covered with a layer of alloying substances. The distribution of the electromagnetic energy in the metal is described by empirical formulas. Melting and solidification of the metal is considered at the Stephan’s approximation. The flow in the liquid is described by the Navier – Stokes equations in the Boussinesq approximation. According to the results of numerical experiments, the flow structure in the melt and distribution of the alloying substances was evaluated versus the characteristics of induction heating


2018 ◽  
Vol 855 ◽  
pp. 43-66 ◽  
Author(s):  
Ke Wu ◽  
Bruno D. Welfert ◽  
Juan M. Lopez

The dynamic response to shear of a fluid-filled square cavity with stable temperature stratification is investigated numerically. The shear is imposed by the constant translation of the top lid, and is quantified by the associated Reynolds number. The stratification, quantified by a Richardson number, is imposed by maintaining the temperature of the top lid at a higher constant temperature than that of the bottom, and the side walls are insulating. The Navier–Stokes equations under the Boussinesq approximation are solved, using a pseudospectral approximation, over a wide range of Reynolds and Richardson numbers. Particular attention is paid to the dynamical mechanisms associated with the onset of instability of steady state solutions, and to the complex and rich dynamics occurring beyond.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Filipe S. Pereira ◽  
Luís Eça ◽  
Guilherme Vaz

The importance of the turbulence closure to the modeling accuracy of the partially-averaged Navier–Stokes equations (PANS) is investigated in prediction of the flow around a circular cylinder at Reynolds number of 3900. A series of PANS calculations at various degrees of physical resolution is conducted using three Reynolds-averaged Navier–Stokes equations (RANS)-based closures: the standard, shear-stress transport (SST), and turbulent/nonturbulent (TNT) k–ω models. The latter is proposed in this work. The results illustrate the dependence of PANS on the closure. At coarse physical resolutions, a narrower range of scales is resolved so that the influence of the closure on the simulations accuracy increases significantly. Among all closures, PANS–TNT achieves the lowest comparison errors. The reduced sensitivity of this closure to freestream turbulence quantities and the absence of auxiliary functions from its governing equations are certainly contributing to this result. It is demonstrated that the use of partial turbulence quantities in such auxiliary functions calibrated for total turbulent (RANS) quantities affects their behavior. On the other hand, the successive increase of physical resolution reduces the relevance of the closure, causing the convergence of the three models toward the same solution. This outcome is achieved once the physical resolution and closure guarantee the precise replication of the spatial development of the key coherent structures of the flow.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 580 ◽  
Author(s):  
Zahra Abdelmalek ◽  
Mohammad Yaghoub Abdollahzadeh Jamalabadi

Micromixers are significant segments inside miniaturized scale biomedical frameworks. Numerical investigation of the effects of galloping cylinder characteristics inside a microchannel Newtonian, incompressible fluid in nonstationary condition is performed. Governing equations of the system include the continuity equation, and Navier–Stokes equations are solved within a moving mesh domain. The symmetry of laminar entering the channel is broken by the self-sustained motion of the cylinder. A parameter study on the amplitude and frequency of passive moving cylinder on the mixing of tiny particles in the fluid is performed. The results show a significant increase to the index of mixing uses of the galloping body in biomedical frameworks in the course of micro-electromechanical systems (MEMS) devices.


Author(s):  
V.N. Popov ◽  
A.N. Cherepanov

The purpose of the research was to numerically simulate the processes when melting drops fall on a substrate. The paper deals with the solidification on the metal surface of a binary aluminum alloy modified by activated refractory nanosized particles, which are the centers of crystalline phase nucleation. We formulated a mathematical model which describes the thermo- and hydrodynamic phenomena in the drop upon interaction with a solid substrate, heterogeneous nucleation during melt cooling, and subsequent crystallization. The flow in a liquid is described by the Navier --- Stokes equations in the Boussinesq approximation. The position of the free boundary of the melt is fixed by marker particles moving with the local liquid velocity. On the melt --- substrate contact surface, thermal resistance is taken into account. The hydrodynamic problem is considered under conditions of crystallization of molten metal. The temperature conditions and the kinetics of the growth of the solid phase in the solidifying aluminum alloy are described for various sizes of formed splats. Satisfactory agreement was found between the shape of the splat obtained by the results of numerical simulation and the available experimental data. The adequacy of the crystallization model in the presence of ultradisperse refractory particles in a binary alloy is confirmed. It was determined that, regardless of the size of the drop, bulk crystallization of the metal takes place. It was found that at a high rate of collision of a drop with a substrate during the melt spreading, a small fraction of the solid phase can be formed.


Sign in / Sign up

Export Citation Format

Share Document