scholarly journals O-Acetylserine and the Regulation of Expression of Genes Encoding Components for Sulfate Uptake and Assimilation in Potato

2005 ◽  
Vol 138 (1) ◽  
pp. 433-440 ◽  
Author(s):  
Laura Hopkins ◽  
Saroj Parmar ◽  
Anna Błaszczyk ◽  
Holger Hesse ◽  
Rainer Hoefgen ◽  
...  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuxin Fan ◽  
Jiayu Peng ◽  
Jiacheng Wu ◽  
Ping Zhou ◽  
Ruijie He ◽  
...  

Abstract Background Flavonoid biosynthesis in plants is primarily regulated at the transcriptional level by transcription factors modulating the expression of genes encoding enzymes in the flavonoid pathway. One of the most studied transcription factor complexes involved in this regulation consists of a MYB, bHLH and WD40. However, in Chinese Narcissus (Narcissus tazetta L. var. chinensis), a popular monocot bulb flower, the regulatory mechanism of flavonoid biosynthesis remains unclear. Results In this work, genes related to the regulatory complex, NtbHLH1 and a R2R3-MYB NtMYB6, were cloned from Chinese Narcissus. Phylogenetic analysis indicated that NtbHLH1 belongs to the JAF13 clade of bHLH IIIf subgroup, while NtMYB6 was highly homologous to positive regulators of proanthocyanidin biosynthesis. Both NtbHLH1 and NtMYB6 have highest expression levels in basal plates of Narcissus, where there is an accumulation of proanthocyanidin. Ectopic over expression of NtbHLH1 in tobacco resulted in an increase in anthocyanin accumulation in flowers, and an up-regulation of expression of the endogenous tobacco bHLH AN1 and flavonoid biosynthesis genes. In contrast, the expression level of LAR gene was significantly increased in NtMYB6-transgenic tobacco. Dual luciferase assays showed that co-infiltration of NtbHLH1 and NtMYB6 significantly activated the promoter of Chinese Narcissus DFR gene. Furthermore, a yeast two-hybrid assay confirmed that NtbHLH1 interacts with NtMYB6. Conclusions Our results suggest that NtbHLH1 may function as a regulatory partner by interacting directly with NtMYB6 to enhance proanthocyanidin accumulation in Chinese Narcissus.


2012 ◽  
Vol 152 (5) ◽  
pp. 615-618 ◽  
Author(s):  
V. Kh. Khavinson ◽  
N. S. Lin’kova ◽  
A. V. Dudkov ◽  
V. O. Polyakova ◽  
I. M. Kvetnoi

Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 4155
Author(s):  
Vyacheslav Buko ◽  
Ilya Zavodnik ◽  
Grażyna Budryn ◽  
Małgorzata Zakłos-Szyda ◽  
Elena Belonovskaya ◽  
...  

The aim of this study was to evaluate the therapeutic effects of chlorogenic acid (CGA) in rats with advanced alcoholic steatohepatitis. The rats were fed on a high-fat diet and gavaged with ethanol (4 g/kg) for 8 weeks. The livers of ethanol-treated rats showed steatosis; necrosis and mononuclear infiltration; and significant upregulation of the mRNA expression of the prooxidant (Cyp2e1, iNos), lipogenic (Srebp1, Acc), proinflammatory (Tlr4, Nf-κb, TnfA, Il-1B, and Il-6), and profibrogenic (TgfB, Col1, VegfA) genes. Simultaneously, a downregulation of level of Sod and Nrf2 was observed, which was accompanied by increased serum transaminase, TnfA, and serum and liver triglycerides levels. CGA administration (40 and 80 mg/kg, 8 weeks) to ethanol-fed group reduced the liver expression levels of Cyp2e1 and iNos, whereas it markedly enhanced the expression of Sod, Nrf2, and Ho-1. CGA at both doses downregulated the expressions of lipogenic, proinflammatory, and profibrogenic genes, while the expression of Tlr4 was lowered only after the higher dose of CGA. The higher dose of CGA efficiently prevented the progression of alcohol-induced steatosis and reduced inflammation through regulation of the expression of genes encoding the proteins involved in the Tlr4/Nf-κB signaling pathway and fibrosis. The study revealed hepatoprotective and anti-inflammatory effects of CGA through the regulation of expression of genes encoding Cyp2e1/Nrf2 involved in oxidative stress modulation. These results demonstrate CGA as a therapeutic candidate for the prevention and treatment of alcoholic steatohepatitis.


Sign in / Sign up

Export Citation Format

Share Document