A simple and inexpensive capillary furnace for variable-temperature X-ray diffraction

2008 ◽  
Vol 41 (1) ◽  
pp. 214-216 ◽  
Author(s):  
Christine Lavigueur ◽  
E. Johan Foster ◽  
Vance E. Williams

An inexpensive capillary furnace has been developed for variable-temperature X-ray diffraction in transmission geometry of air-stable liquid crystals and other materials. It offers temperature control with fluctuations of less than ±1 K in the range of interest for these samples, from room temperature to near 573 K. Phases can be accessed through heating or cooling with no significant overshooting of the target temperature. The furnace is designed to fit on a classical goniometer, and can be controlled by any standard temperature controller. The simple design of this furnace means that it is both inexpensive to build and easy to operate.

Author(s):  
Tamara J. Bednarchuk ◽  
Wolfgang Hornfeck ◽  
Vasyl Kinzhybalo ◽  
Zhengyang Zhou ◽  
Michal Dušek ◽  
...  

The organic–inorganic hybrid compound 4-aminopyridinium tetraaquabis(sulfato)iron(III), (C5H7N2)[FeIII(H2O)4(SO4)2] (4apFeS), was obtained by slow evaporation of the solvent at room temperature and characterized by single-crystal X-ray diffraction in the temperature range from 290 to 80 K. Differential scanning calorimetry revealed that the title compound undergoes a sequence of three reversible phase transitions, which has been verified by variable-temperature X-ray diffraction analysis during cooling–heating cycles over the temperature ranges 290–100–290 K. In the room-temperature phase (I), space group C2/c, oxygen atoms from the closest Fe-atom environment (octahedral) were disordered over two equivalent positions around a twofold axis. Two intermediate phases (II), (III) were solved and refined as incommensurately modulated structures, employing the superspace formalism applied to single-crystal X-ray diffraction data. Both structures can be described in the (3+1)-dimensional monoclinic X2/c(α,0,γ)0s superspace group (where X is ½, ½, 0, ½) with modulation wavevectors q = (0.2943, 0, 0.5640) and q = (0.3366, 0, 0.5544) for phases (II) and (III), respectively. The completely ordered low-temperature phase (IV) was refined with the twinning model in the triclinic P{\overline 1} space group, revealing the existence of two domains. The dynamics of the disordered anionic substructure in the 4apFeS crystal seems to play an essential role in the phase transition mechanisms. The discrete organic moieties were found to be fully ordered even at room temperature.


1989 ◽  
Vol 67 (11) ◽  
pp. 2023-2029 ◽  
Author(s):  
Patti J. Kellett ◽  
Oren P. Anderson ◽  
Steven H. Strauss ◽  
Kent D. Abney

An orthorhombic crystalline modification of [(PS)H+][OTeF5−] was studied by single crystal X-ray diffraction ((PS)H+ = protonated 1,8-bis(dimethylamino)naphthalene): orthorhombic, space group Cmcm, a = 8.607(2), b = 14.048(3), c = 13.365(2) Å, Z = 4, T = −130 °C. The structural parameters for the anion and cation in this modification (Mod-B) are very similar to those for the previously reported triclinic modification of this salt (Mod-A). However, variable temperature IR spectra for Mod-B suggest that the OTeF5− anion is exhibiting a two-site O/Fax interchange above −70 °C. Solid-state 19F NMR spectra suggest that this interchange may be as rapid as 104–105 s−1 at room temperature. Keywords: crystal structure of protonated 1,8-bis(dimethylamino)naphthalene)pentafluorotellurate(VI), polymorphism, solid state 19FNMR.


1985 ◽  
Vol 38 (2) ◽  
pp. 273 ◽  
Author(s):  
RS Dickson ◽  
GS Evans ◽  
GD Fallon

Various alkynes (EtC2Et, MeO2CC2CO2Me, CF3C2CF3, PhC2Ph, C6F5C2C6F5, PhC2Me, PhC2C6-F5, PhC2CO2Me) react with (η-C5Me5)2Rh2(μ-CO)2 in acetone at room temperature; no reaction was observed with ButC2But. The σ-bridging alkyne complex, trans-(η-C5Me5)2Rh2(CO)2(μ-η1:η1C6F5C2C6F5), was obtained from the reaction with C6F5C2C6F5. With the other alkynes, dimetallaeneone complexes, (η-C5Me5)2Rh2(μ-CO){μ-η2:η2-C(O)C2RR′}, are formed. Some of these 'eneone' complexes co-exist with (η- C5Me5)2Rh2(CO)2(μ-η1:η1-RC2R�) in the solid state (RC2R� = PhC2C6F5) and/or in solution (EtC2Et, CF3C2CF3, PhC2C6F5); others (MeO2CC2CO2Me, PhC2Ph, PhC2Me, PhC2CO2Me) exist exclusively as (η-C5Me5)2Rh2(μ-CO){μ-η2:η2- C(O)C2RR′} in both the solid and solution states. The geometry of the bridging group in (η-C5Me5)2Rh2(μ-CO){μ-η2:η2-C(O)C2(CF3)2} has been determined from an X-ray diffraction study. The compound crystallizes with four molecules in the monoclinic space group P21/n in a unit cell of dimensions a 9.451(4), b 15.287(5), c 18.821(8)Ǻ, β 98.66(5)°. The structure was solved by conventional heavy atom methods and refined to R 0.066 based on 4356 observed reflections above background. The structure contains a metalla-eneone ring, Rh -C(=O)-C(CF3)=C(CF3), with the alkene bond η2-attached to the second rhodium atom. Variable temperature N.M.R . measurements establish that the complexes (η- C5Me5)2Rh2(μ-CO){μ-η2:η2-C(O)C2R2}(R = CF3 or CO2Me) are fluxional in solution. Facile cleavage of a C(O)-C(R) bond enables the metalla-eneone ring to shift rapidly from one rhodium atom to the other. Other products formed in the reactions between (η-C5Me5)2Rh2(μ-CO)2 and RC2R′ include. (η-C5Me5) Rh {C4(CF3)4CO}, (η-C5Me5) Rh (η4-C6R6) (R = CF3 or CO2Me), (η-C5Me5)2Rh2-(C4R2R′2) (R = R′ = CO2Me; or R, R′ = Ph, C6F5), (η- C5Me5)2Rh2(CO2C2Ph2), (η-C5Me5)- Rh (C4Ph4CO2), (η-C5Me5)2Rh2(CO)2{C4(CF3)4}, (η-C5Me5)2Rh2(CO)(μ-CO){COC4(C6F5)4} and C6R3R′3 (R = R′ = Ph or CO2Me; R = Ph and R′ = Me). Reactions between (η-C5Me5)2-Co2(μ-CO)2 and alkynes at room temperature or above yield mononuclear cyclopentadienone complexes (η-C5Me5)Co{C4R4CO}(R = Me, CF3 or C6F5), and the mononuclear arene complex (η-C5Me5)Co{C6(CF3)6}.


Author(s):  
C. Wolpers ◽  
R. Blaschke

Scanning microscopy was used to study the surface of human gallstones and the surface of fractures. The specimens were obtained by operation, washed with water, dried at room temperature and shadowcasted with carbon and aluminum. Most of the specimens belong to patients from a series of X-ray follow-up study, examined during the last twenty years. So it was possible to evaluate approximately the age of these gallstones and to get information on the intensity of growing and solving.Cholesterol, a group of bile pigment substances and different salts of calcium, are the main components of human gallstones. By X-ray diffraction technique, infra-red spectroscopy and by chemical analysis it was demonstrated that all three components can be found in any gallstone. In the presence of water cholesterol crystallizes in pane-like plates of the triclinic crystal system.


Author(s):  
Naoki Yamamoto ◽  
Makoto Kikuchi ◽  
Tooru Atake ◽  
Akihiro Hamano ◽  
Yasutoshi Saito

BaZnGeO4 undergoes many phase transitions from I to V phase. The highest temperature phase I has a BaAl2O4 type structure with a hexagonal lattice. Recent X-ray diffraction study showed that the incommensurate (IC) lattice modulation appears along the c axis in the III and IV phases with a period of about 4c, and a commensurate (C) phase with a modulated period of 4c exists between the III and IV phases in the narrow temperature region (—58°C to —47°C on cooling), called the III' phase. The modulations in the IC phases are considered displacive type, but the detailed structures have not been studied. It is also not clear whether the modulation changes into periodic arrays of discommensurations (DC’s) near the III-III' and IV-V phase transition temperature as found in the ferroelectric materials such as Rb2ZnCl4.At room temperature (III phase) satellite reflections were seen around the fundamental reflections in a diffraction pattern (Fig.1) and they aligned along a certain direction deviated from the c* direction, which indicates that the modulation wave vector q tilts from the c* axis. The tilt angle is about 2 degree at room temperature and depends on temperature.


2018 ◽  
Author(s):  
Katherine Marczenko ◽  
James Goettel ◽  
Gary Schrobilgen

Oxygen coordination to the Xe(VI) atom of XeO<sub>3</sub> was observed in its adducts with triphenylphosphine oxide, dimethylsulfoxide, pyridine-N-oxide, and acetone. The crystalline adducts were characterized by low-temperature, single-crystal X-ray diffraction and Raman spectroscopy. Unlike solid XeO<sub>3</sub>, which detonates when mechanically or thermally shocked, the solid [(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>PO]<sub>2</sub>XeO<sub>3</sub>, [(CH<sub>3</sub>)<sub>2</sub>SO]<sub>3</sub>(XeO<sub>3</sub>)<sub>2</sub>,<sub> </sub>and (C<sub>5</sub>H<sub>5</sub>NO)<sub>3</sub>(XeO<sub>3</sub>)<sub>2</sub> adducts are insensitive to mechanical shock, but undergo rapid deflagration when ignited by a flame. Both [(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>PO]<sub>2</sub>XeO<sub>3 </sub>and (C<sub>5</sub>H<sub>5</sub>NO)<sub>3</sub>(XeO<sub>3</sub>)<sub>2</sub> are air-stable whereas [(CH<sub>3</sub>)<sub>2</sub>SO]<sub>3</sub>(XeO<sub>3</sub>)<sub>2</sub> slowly decomposes over several days and [(CH<sub>3</sub>)<sub>2</sub>CO]<sub>3</sub>XeO<sub>3</sub> undergoes adduct dissociation at room temperature. The xenon coordination sphere of [(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>PO]<sub>2</sub>XeO<sub>3</sub> is a distorted square pyramid which provides the first example of a five-coordinate XeO<sub>3</sub> adduct. The xenon coordination spheres of the remaining adducts are distorted octahedra comprised of three Xe---O secondary contacts that are approximately trans to the primary Xe–O bonds of XeO<sub>3</sub>. Quantum-chemical calculations were used to assess the Xe---O adduct bonds, which are predominantly electrostatic σ-hole bonds between the nucleophilic oxygen atoms of the bases and the σ-holes of the xenon atoms.


2019 ◽  
Author(s):  
Chem Int

Optically transparent single crystals of potassium acid phthalate (KAP, 0.5 g) 0.05 g and 0.1 g (1 and 2 mol %) trytophan were grown in aqueous solution by slow evaporation technique at room temperature. Single crystal X- ray diffraction analysis confirmed the changes in the lattice parameters of the doped crystals. The presence of functional groups in the crystal lattice has been determined qualitatively by FTIR analysis. Optical absorption studies revealed that the doped crystals possess very low absorption in the entire visible region. The dielectric constant has been studied as a function of frequency for the doped crystals. The thermal stability was evaluated by TG-DSC analysis.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1023 ◽  
Author(s):  
Ashish Chhaganlal Gandhi ◽  
Chia-Liang Cheng ◽  
Sheng Yun Wu

We report the synthesis of room temperature (RT) stabilized γ–Bi2O3 nanoparticles (NPs) at the expense of metallic Bi NPs through annealing in an ambient atmosphere. RT stability of the metastable γ–Bi2O3 NPs is confirmed using synchrotron radiation powder X-ray diffraction and Raman spectroscopy. γ–Bi2O3 NPs exhibited a strong red-band emission peaking at ~701 nm, covering 81% integrated intensity of photoluminescence spectra. Our findings suggest that the RT stabilization and enhanced red-band emission of γ‒Bi2O3 is mediated by excess oxygen ion vacancies generated at the octahedral O(2) sites during the annealing process.


1988 ◽  
Vol 133 ◽  
Author(s):  
K. S. Kumar ◽  
S. K. Mannan

ABSTRACTThe mechanical alloying behavior of elemental powders in the Nb-Si, Ta-Si, and Nb-Ta-Si systems was examined via X-ray diffraction. The line compounds NbSi2 and TaSi2 form as crystalline compounds rather than amorphous products, but Nb5Si3 and Ta5Si3, although chemically analogous, respond very differently to mechanical milling. The Ta5Si3 composition goes directly from elemental powders to an amorphous product, whereas Nb5Si3 forms as a crystalline compound. The Nb5Si3 compound consists of both the tetragonal room-temperature α phase (c/a = 1.8) and the tetragonal high-temperature β phase (c/a = 0.5). Substituting increasing amounts of Ta for Nb in Nb5Si3 initially stabilizes the α-Nb5Si3 structure preferentially, and subsequently inhibits the formation of a crystalline compound.


Sign in / Sign up

Export Citation Format

Share Document