Crystal chemistry of orthosilicates and their analogs: the classification by topological types of suprapolyhedral structural units

2002 ◽  
Vol 58 (6) ◽  
pp. 948-964 ◽  
Author(s):  
G. D. Ilyushin ◽  
V. A. Blatov ◽  
Yu. A. Zakutkin

A method is developed for the analysis and classification of orthosilicates and their analogs Mx (TO4) y containing M cations and tetrahedral TO4 anions. The method uses the concepts of coordination sequence and crystal structure `reduced' graphs and is optimized for orthostructures of any complexity. First, the suprapolyhedral level of crystal structure organization was studied, where T tetrahedra were considered as templates for condensing M polyhedra, constructing as a result T polyhedral microensembles. Using this methodology, the crystal structures of 54 orthosilicates and orthogermanates were analyzed within the first 12 coordination spheres of T nodes and were arranged into 21 topological types. The topological types were expanded with the analogs found within the orthostructures of phosphates, sulfates etc. T polyhedral microensembles were used for the topological classification of reconstruction mechanisms of thermal and baric phase transitions of orthosilicates.

2002 ◽  
Vol 58 (2) ◽  
pp. 198-218 ◽  
Author(s):  
G. D. Ilyushin ◽  
V. A. Blatov

The first attempt is undertaken to consider systematically topological structures of zirconosilicates and their analogs (60 minerals and 34 synthetic phases), where the simplest structure units are MO6 octahedra and TO4 tetrahedra united by vertices ([TO4]:[MO6] = 1:1–6:1). A method of analysis and classification of mixed three-dimensional MT frameworks by topological types with coordination sequences {N k } is developed, which is based on the representation of crystal structure as a finite `reduced' graph. The method is optimized for the frameworks of any composition and complexity and implemented within the TOPOS3.2 program package. A procedure of hierarchical analysis of MT-framework structure organization is proposed, which is based on the concept of polyhedral microensemble (PME) being a geometrical interpretation of coordination sequences of M and T nodes. All 12 theoretically possible PMEs of MT 6 polyhedral composition are considered where T is a separate and/or connected tetrahedron. Using this methodology the MT frameworks in crystal structures of zirconosilicates and their analogs were analyzed within the first 12 coordination spheres of M and T nodes and related to 41 topological types. The structural correlations were revealed between rosenbuschite, lavenite, hiortdahlite, woehlerite, siedozerite and the minerals of the eudialyte family.


1989 ◽  
Vol 44 (1) ◽  
pp. 41-55 ◽  
Author(s):  
Jutta Hartmann ◽  
Shi-Qi Dou ◽  
Alarich Weiss

Abstract The 79Br and 127I NQR spectra were investigated for 1,2-diammoniumethane dibromide, -diiodide, 1,3-diammoniumpropane dibromide, -diiodide, piperazinium dibromide monohydrate, and piperazinium monoiodide in the temperature range 77 ≦ T/K ≦ 420. Phase transitions could be observed for the three iodides. The temperatures for the phase transitions are: 400 K and 404 K for 1,2-diammoniumethane diiodide, 366 K for 1,3-diammoniumpropane diiodide, and 196 K for piperazinium monoiodide.The crystal structures were determined for the piperazinium compounds. Piperazinium dibromide monohydrate crystallizes monoclinic, space group C2/c, with a= 1148.7 pm, 0 = 590.5 pm, c= 1501.6pm, β = 118.18°, and Z = 4. For piperazinium monoiodide the orthorhombic space group Pmn 21 was found with a = 958.1 pm, b = 776.9 pm, c = 989.3 pm, Z = 4. Hydrogen bonds N - H ... X with X = Br, I were compared with literature data.


2021 ◽  
pp. 2150211
Author(s):  
S. H. Jabarov ◽  
R. T. Aliyev ◽  
N. A. Ismayilova

In this work, the crystal structures and phase transitions of compounds with perovskite structure were investigated. The classification of structural phase transitions in perovskites was carried out, the most common crystal structures and structural phase transitions were shown. A mathematical model was constructed, a theorem was given and proved for the probability of a possible transition. The formulas [Formula: see text] and [Formula: see text] are given for the mathematical expectation and variance of random variable [Formula: see text], which is the moment when the stochastic process [Formula: see text] deviation from the boundary [0, [Formula: see text]] interval for the first time. According to the mathematical model, one of the trajectories of random processes corresponding to the phase transitions that occur in perovskites is constructed.


1988 ◽  
Vol 52 (366) ◽  
pp. 377-387 ◽  
Author(s):  
Stefano Merlino

AbstractThe crystal structure of gyrolite from Qarusait, Greenland, was solved and refined with the space group P and cell parameters a = 9.74(1), b = 9.74(1), c = 22.40(2)Å, α = 95.7(1)°, β = 91.5(1)°, γ = 120.0(1)°. The structure is built up by the stacking of the structural units already found in the crystal structure of reyerite (Merlino, 1972, 1988), namely tetrahedral sheets S1 and S2 and octahedral sheets O. The tetrahedral and octahedral sheets are connected by corner sharing to give rise to the complex layer which can be schematically described as 1OS2, where S2 and , as well as O and , are symmetry-related units. Successive complex layers with composition [Ca14Si23AlO60(OH)8]-5 are connected through an interlayer sheet made up by calcium and sodium cations and water molecules.The unit cell content NaCa16Si23AlO60(OH)8·14H2O, determined by the structural study, was confirmed by a chemical analysis, apart from the indication of a somewhat larger water content. The crystal chemistry of gyrolite is discussed on the basis of the present structural results and the chemical data given in the literature for gyrolite from different localities: the crystal chemical formula which accounts for most gyrolite samples is Ca16Si24O60(OH)8·(14+x)H2O, with 0 ⩽ x ⩽ 3.Stacking disorder, twinning and polytypic variants in gyrolite, as well as the structural relationships of gyrolite with truscottite, reyerite, fedorite and the synthetic phases K and Z are described and discussed.


Author(s):  
M. Ruck

The term pseudo-symmetry means a spatial arrangement that feigns a symmetry without fulfilling it. In crystal structures pseudo-symmetry is a more common feature than often recognized. In case of small deviations a variety of phenomena results: polytypism and stacking faults, disorder and twinning, commensurate and incommensurate super-structures, phase transitions and unusual reflection conditions. Most of these effects complicate crystal structure determination considerably. A series of examples with focus on the new class of ternary bismuth subhalides illustrates the different crystallographic consequences of pseudo-symmetry in crystal structures.


2013 ◽  
Vol 68 (5-6) ◽  
pp. 616-624 ◽  
Author(s):  
Tanja Schustereit ◽  
Harald Henning ◽  
Thomas Schleid ◽  
Ingo Hartenbach

The lanthanoid(III) bromide ortho-oxomolybdates(VI) LnBr[MoO4] (Ln = Pr, Nd, Sm, Gd - Lu) crystallize triclinically in the space group P1 (a=686 - 689, b=713 - 741, c=1066 - 1121 pm, a =103 - 106, b =107 - 108, g = 92 - 95°) with Z =4. The crystal structure contains two crystallographically distinguishable Ln3+ cations, each one with a coordination number of seven plus one. (Ln1)3+ is surrounded by three bromide and four plus one oxide anions, while for (Ln2)3+ just one bromide and six plus one oxide anions belong to the coordination sphere. Considering the smallest lanthanoids, however, the distances to the farthest anions increase so much that their contribution to the coordination spheres becomes negligible in both cases. The polyhedra around (Ln1)3+ are connected to each other via common edges, which consist of two crystallographically identical Br- anions (Br1). Furthermore, the common structure of the LnBr[MoO4] series contains two crystallographically different, discrete [MoO4]2- ortho-oxomolybdate(VI) tetrahedra. Two plus one oxygen atoms of each [(Mo1)O4]2- unit are used to interconnect the polyhedra around (Ln1)3+ and (Ln2)3+ together with one Br- anion (Br2). The connection between two polyhedra around (Ln2)3+ is generated exclusively by two plus one oxygen atoms of two [(Mo2)O4]2- anions. The complete structural arrangement can be considered as a bundle of primitively packed 1¥{LnBr[MoO4]} chains with two alternating motifs of linkage, which are running parallel along [012].


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sergio Porta ◽  
Fabio Cavaliere ◽  
Maura Sassetti ◽  
Niccolò Traverso Ziani

1994 ◽  
Vol 72 (5) ◽  
pp. 1273-1293 ◽  
Author(s):  
Pradip K. Bakshi ◽  
Antony Linden ◽  
Beverly R. Vincent ◽  
Stephen P. Roe ◽  
D. Adhikesavalu ◽  
...  

The aim of this investigation is to provide a classification and examples of N—H …π (and also O—H …π) bonds to the aromatic π systems in organic ammonium tetraphenylborates that would serve as reference for X—H …π(arene) bonds in general. To this end the crystal structures of the tetraphenylborates of the following cations have been determined: Me3NH+, Et3NH+, quinuclidinium, DabcoH+, Et(iso-Pr)2NH+ (monohydrate), (Ph3B)NH[—(CH2)2—]2NHMe+ (Me2CO solvate), Me2NH2+ (MeCN and Et2CO solvates), Et2NH2+, (iso-Pr)2NH2+, azoniacycloheptane, guanidinium (monohydrate), MeNH3+, EtNH3+, and 1-adamantammonium (monohydrate). These structures contain a variety of normal, bifurcated, and trifurcated N—H …π bonds as well as normal O—H …π bonds to the phenyl groups of the anion. The X—H …π bonds will form whenever opportunity arises, even though the result may be unfavourable bonding geometry. Branched bonds and orientational disorder represent compromise solutions in situations where the H(X) hydrogens are presented with competing phenyl acceptors or where the general organization of the crystal structure offers unfavourable bonding conditions to these hydrogens. The distributions of the distances from X or H(X) to the centre of the phenyl-ring skeleton are analyzed in detail, as are also those of the mean X … C and H(X)… C distances to the ring carbons.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1574-C1574
Author(s):  
Ryosuke Toyoshima ◽  
Akiko Sekine ◽  
Hidehiro Uekusa

Hydration/dehydration phase transitions of active pharmaceutical ingredients (API) are often accompanied with changes of physicochemical properties, such as solubility, stability, and bioavailability. Therefore, three dimensional structural investigation of the hydration / dehydration mechanism of API is important for pharmaceutical research and development. By relative humidity control, Cefaclor hydrate crystal dehydrates non-stoichiometrically from dihydrate to anhydrous form A. Unexpectedly, its monohydrate form transformed into new 1.9 hydrate by slurry treatment (methanol / water) which dehydrated into another anhydrous form B through hemihydrate by heating. In this study, these hydration and dehydration presudo-polymorphic transitions of Cefaclor are investigated by the crystal structure analyses. Crystal structures of anhydrous and partially dehydrated forms were determined by structure determination from powder diffraction data technique because such dehydration phase transitions were resulted in a disintegration of single crystal form. In the first dehydration route, hydrates and the anhydrous form A have similar crystal structure, which is referred as `isomorphic desolvation'. Interestingly, the anhydrous form A has void spaces which corresponds to the water molecule position in the hydrate form. Thus, in hydration / dehydration phase transitions, water molecules move in and out of the void without changing the crystal structures, and the anhydrous form A can hydrate even in low R.H. condition. In the second route, the 1.9 hydrate, hemihydrate and the anhydrate form B have three crystallographically independent molecules forming similar T-shape building block pattern. There are tunnel spaces along b axis between the blocks. In the hydration / dehydration process, the blocks slide each other to open and close the channel. This mechanism explains another non-stoichiometric dehydration in this route.


Sign in / Sign up

Export Citation Format

Share Document