Registration of the rotation axis in X-ray tomography

2015 ◽  
Vol 22 (2) ◽  
pp. 452-457 ◽  
Author(s):  
Yimeng Yang ◽  
Feifei Yang ◽  
Ferdinand F. Hingerl ◽  
Xianghui Xiao ◽  
Yijin Liu ◽  
...  

There is high demand for efficient, robust and automated routines for tomographic data reduction, particularly for synchrotron data. Registration of the rotation axis in data processing is a critical step affecting the quality of the reconstruction and is not easily implemented with automation. Existing methods for calculating the center of rotation have been reviewed and an improved algorithm to register the rotation axis in tomographic data is presented. The performance of the proposed method is evaluated using synchrotron-based microtomography data on geological samples with and without artificial reduction of the signal-to-noise ratio. The proposed method improves the reconstruction quality by correcting both the tilting error and the translational offset of the rotation axis. The limitation of this promising method is also discussed.

2013 ◽  
Vol 7 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Al-Fahoum A ◽  
Harb B

In this paper, a combined Fractal and Wavelet (CFW) compression algorithm targeting x-ray angiogram images is proposed. Initially, the image is decomposed using wavelet transform. The smoothness of the low frequency part of the image appears as an approximation image with higher self similarities, therefore, it is coded using a fractal coding technique. However, the rest of the image is coded using an adaptive wavelet thresholding technique. This model is implemented and its performance is compared with best performances of the available published algorithms. A data set containing 1000 x-ray angiograms is used to study the performance of the algorithm. A minimum compression ratio of 30 with a peak signal to noise ratio (PSNR) of 36 dB and percent diameter stenosis deviation of (<0.2%) was achieved. Results demonstrate the effectiveness of the proposed technique in obtaining a diagnostic quality of reconstructed images at very low bit rates.


2014 ◽  
Vol 2 (2) ◽  
pp. 47-58
Author(s):  
Ismail Sh. Baqer

A two Level Image Quality enhancement is proposed in this paper. In the first level, Dualistic Sub-Image Histogram Equalization DSIHE method decomposes the original image into two sub-images based on median of original images. The second level deals with spikes shaped noise that may appear in the image after processing. We presents three methods of image enhancement GHE, LHE and proposed DSIHE that improve the visual quality of images. A comparative calculations is being carried out on above mentioned techniques to examine objective and subjective image quality parameters e.g. Peak Signal-to-Noise Ratio PSNR values, entropy H and mean squared error MSE to measure the quality of gray scale enhanced images. For handling gray-level images, convenient Histogram Equalization methods e.g. GHE and LHE tend to change the mean brightness of an image to middle level of the gray-level range limiting their appropriateness for contrast enhancement in consumer electronics such as TV monitors. The DSIHE methods seem to overcome this disadvantage as they tend to preserve both, the brightness and contrast enhancement. Experimental results show that the proposed technique gives better results in terms of Discrete Entropy, Signal to Noise ratio and Mean Squared Error values than the Global and Local histogram-based equalization methods


Author(s):  
Mourad Talbi ◽  
Med Salim Bouhlel

Background: In this paper, we propose a secure image watermarking technique which is applied to grayscale and color images. It consists in applying the SVD (Singular Value Decomposition) in the Lifting Wavelet Transform domain for embedding a speech image (the watermark) into the host image. Methods: It also uses signature in the embedding and extraction steps. Its performance is justified by the computation of PSNR (Pick Signal to Noise Ratio), SSIM (Structural Similarity), SNR (Signal to Noise Ratio), SegSNR (Segmental SNR) and PESQ (Perceptual Evaluation Speech Quality). Results: The PSNR and SSIM are used for evaluating the perceptual quality of the watermarked image compared to the original image. The SNR, SegSNR and PESQ are used for evaluating the perceptual quality of the reconstructed or extracted speech signal compared to the original speech signal. Conclusion: The Results obtained from computation of PSNR, SSIM, SNR, SegSNR and PESQ show the performance of the proposed technique.


Author(s):  
E. Brambrink ◽  
S. Baton ◽  
M. Koenig ◽  
R. Yurchak ◽  
N. Bidaut ◽  
...  

We have developed a new radiography setup with a short-pulse laser-driven x-ray source. Using a radiography axis perpendicular to both long- and short-pulse lasers allowed optimizing the incident angle of the short-pulse laser on the x-ray source target. The setup has been tested with various x-ray source target materials and different laser wavelengths. Signal to noise ratios are presented as well as achieved spatial resolutions. The high quality of our technique is illustrated on a plasma flow radiograph obtained during a laboratory astrophysics experiment on POLARs.


2022 ◽  
Vol 93 (1) ◽  
pp. 015006
Author(s):  
Xiaolong Zhao ◽  
Ming Ye ◽  
Zhi Cao ◽  
Danyang Huang ◽  
Tingting Fan ◽  
...  

2011 ◽  
Vol 110 (10) ◽  
pp. 109902 ◽  
Author(s):  
Michael Chabior ◽  
Tilman Donath ◽  
Christian David ◽  
Manfred Schuster ◽  
Christian Schroer ◽  
...  

2012 ◽  
Vol 29 (6) ◽  
pp. 772-795 ◽  
Author(s):  
Lei Lei ◽  
Guifu Zhang ◽  
Richard J. Doviak ◽  
Robert Palmer ◽  
Boon Leng Cheong ◽  
...  

Abstract The quality of polarimetric radar data degrades as the signal-to-noise ratio (SNR) decreases. This substantially limits the usage of collected polarimetric radar data to high SNR regions. To improve data quality at low SNRs, multilag correlation estimators are introduced. The performance of the multilag estimators for spectral moments and polarimetric parameters is examined through a theoretical analysis and by the use of simulated data. The biases and standard deviations of the estimates are calculated and compared with those estimates obtained using the conventional method.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1330-C1330
Author(s):  
Joerg Wiesmann ◽  
Andreas Kleine ◽  
Christopher Umland ◽  
André Beerlink ◽  
Juergen Graf ◽  
...  

Parasitic scattering caused by apertures is a well-known problem in X-ray analytics, which forces users and manufacturers to adapt their experimental setup to this unwanted phenomenon. Increased measurement times due to lower photon fluxes, a lower resolution caused by an enlarged beam stop, a larger beam defining pinhole-to-sample distance due to the integration of an antiscatter guard and generally a lower signal-to-noise ratio leads to a loss in data quality. In this presentation we will explain how the lately developed scatterless pinholes called SCATEX overcome the aforementioned problems. SCATEX pinholes are either made of Germanium or of Tantalum and momentarily have a minimum diameter of 30µm. Thus, these novel apertures are applicable to a wide range of different applications and X-ray energies. We will show measurements which were performed either at home-lab small angle X-ray scattering (SAXS) systems such as the NANOSTAR of Bruker AXS or at synchrotron beamlines. At the PTB four-crystal monochromator beamline at BESSY II data was collected for a comparison of conventional pinholes, scatterless Germanium slit systems and SCATEX pinholes. At the Nanofocus Endstation P03 beamline at PETRA III we compared the performance of our SCATEX apertures with conventional Tungsten slit systems under high flux density conditions.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5540
Author(s):  
Nayeem Hasan ◽  
Md Saiful Islam ◽  
Wenyu Chen ◽  
Muhammad Ashad Kabir ◽  
Saad Al-Ahmadi

This paper proposes an encryption-based image watermarking scheme using a combination of second-level discrete wavelet transform (2DWT) and discrete cosine transform (DCT) with an auto extraction feature. The 2DWT has been selected based on the analysis of the trade-off between imperceptibility of the watermark and embedding capacity at various levels of decomposition. DCT operation is applied to the selected area to gather the image coefficients into a single vector using a zig-zig operation. We have utilized the same random bit sequence as the watermark and seed for the embedding zone coefficient. The quality of the reconstructed image was measured according to bit correction rate, peak signal-to-noise ratio (PSNR), and similarity index. Experimental results demonstrated that the proposed scheme is highly robust under different types of image-processing attacks. Several image attacks, e.g., JPEG compression, filtering, noise addition, cropping, sharpening, and bit-plane removal, were examined on watermarked images, and the results of our proposed method outstripped existing methods, especially in terms of the bit correction ratio (100%), which is a measure of bit restoration. The results were also highly satisfactory in terms of the quality of the reconstructed image, which demonstrated high imperceptibility in terms of peak signal-to-noise ratio (PSNR ≥ 40 dB) and structural similarity (SSIM ≥ 0.9) under different image attacks.


Sign in / Sign up

Export Citation Format

Share Document