scholarly journals Extraordinary anisotropic thermal expansion in photosalient crystals

IUCrJ ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Khushboo Yadava ◽  
Gianpiero Gallo ◽  
Sebastian Bette ◽  
Caroline Evania Mulijanto ◽  
Durga Prasad Karothu ◽  
...  

Although a plethora of metal complexes have been characterized, those having multifunctional properties are very rare. This article reports three isotypical complexes, namely [Cu(benzoate)L 2], where L = 4-styrylpyridine (4spy) (1), 2′-fluoro-4-styrylpyridine (2F-4spy) (2) and 3′-fluoro-4-styrylpyridine (3F-4spy) (3), which show photosalient behavior (photoinduced crystal mobility) while they undergo [2+2] cycloaddition. These crystals also exhibit anisotropic thermal expansion when heated from room temperature to 200°C. The overall thermal expansion of the crystals is impressive, with the largest volumetric thermal expansion coefficients for 1, 2 and 3 of 241.8, 233.1 and 285.7 × 10−6 K−1, respectively, values that are comparable to only a handful of other reported materials known to undergo colossal thermal expansion. As a result of the expansion, their single crystals occasionally move by rolling. Altogether, these materials exhibit unusual and hitherto untapped solid-state properties.

1992 ◽  
Vol 181 (1-2) ◽  
pp. 293-298 ◽  
Author(s):  
Y. Uwatoko ◽  
H. Okita ◽  
G. Oomi ◽  
I. Umehara ◽  
Y. Ōnuki

1972 ◽  
Vol 16 ◽  
pp. 390-395 ◽  
Author(s):  
W. S. McCain ◽  
D. L. Albright

AbstractThe magnetic crystal disrortion of weakly ferromagnetic α-Fe2O3 was investigated by x-ray diffraction techniques. Here crystal distortion is taken as the temperature dependent changes of lattice constants and thermal expansion coefficients. Moreover, the oxygen position parameter and the carbon-oxygen distance of MnCO3 were determined.The lattice constants and thermal expansion coefficients of α-Fe2O3 were measured from room temperature down to 243°K. The crystal distortion, as measured by the changes in lattice constants, thermal expansion coefficients and axial ratio, was found to be highly anisotropic. The co hexagonal lattice constant was influenced very slightly by magnetic distortion; it changed only by 0.01 percent between room temperature and the Morin temperature of 254°K. On the other hand, the ao lattice constant changes by 0.11 percent between room temperature and the Morin temperature. The thermal expansion coefficients of the lattice constants showed a similar contrast. The co coefficient was found to be independent of temperature from room temperature down to the Morin temperature. However, in the same temperature range, the ao coefficient showed an anomalous increase with decreasing temperature. In addition, the ao coefficient showed an infinite discontinuity at the Morin temperature.The change in the axial ratio with temperature suggests that the net weak ferromagnetic moment of α-Fe2O3 reaches a maximum at 275°K.The oxygen position parameter, x, in MnCO3 as determined from two reflections has a value of 0.2702 ± 0.001. The carbon-oxygen distance as calculated from the lattice constants and the oxygen position parameter is 1.29 ±0.002 Å. This value is another confirmation of the Pauling theory of the resonating carbonate structure.


2006 ◽  
Vol 317-318 ◽  
pp. 177-180 ◽  
Author(s):  
Mabito Iguchi ◽  
Motohiro Umezu ◽  
Masako Kataoka ◽  
Hiroaki Nakamura ◽  
Mamoru Ishii

Ceramics with zero thermal expansion coefficients at room temperature (293K) were investigated. We found the thermal expansion coefficient was controlled by a compounding ratio of lithium aluminum silicate (LAS) and silicon carbide (SiC), which have negative and positive thermal expansion coefficients respectively. Although it was difficult to densify the composite of the LAS and SiC (LAS/SiC) in the sintering process, an addition of nitride improved the sinterability of the LAS/SiC. In order to examine the effect of the nitride additive, at first, the melting point of the LAS with silicon nitride (Si3N4) or aluminum nitride was measured by TG-DTA. The melting point of the LAS decreased with existence of nitride. It is believed that the densification of the LAS/SiC was promoted by the nitride, because the nitride causes the LAS/SiC to form a liquid phase, thereby decreasing the melting point. Next, the lattice constant of the LAS with Si3N4 was measured by XRD and it was verified that the a-axis was longer and the c-axis was shorter than those of the LAS without additive. It is supposed that this phenomenon is due to the substitution of nitrogen for oxygen in the LAS lattice, and the decrease of the melting point of the LAS with nitride seems to be influenced by this substitution of nitrogen.


2008 ◽  
Vol 368-372 ◽  
pp. 1662-1664 ◽  
Author(s):  
X.L. Xiao ◽  
M.M. Wu ◽  
J. Peng ◽  
Y.Z. Cheng ◽  
Zhong Bo Hu

Compounds Yb2Mo3O12 and Lu2Mo3O12 were prepared by conventional solid-state reaction. Their crystal structures and thermal expansion properties were investigated. It was found that Yb2Mo3O12 and Lu2Mo3O12 adopt orthorhombic structure and show negative thermal expansion (NTE) in the temperature range of 200-800 °C. Their a-axis and c-axis exhibit stronger contraction in the temperature range of 200-800 °C, while b-axis slightly expands in the temperature range of 200-300 °C and then contracts in the temperature range of 300-800 °C. The linear thermal expansion coefficients al of Yb2Mo3O12 and Lu2Mo3O12 are −5.17 × 10−6 °C−1 and −5.67 × 10−6 °C−1, respectively.


2011 ◽  
Vol 399-401 ◽  
pp. 80-84
Author(s):  
Yi Yuan Tang ◽  
Jie Li Meng ◽  
Kai Lian Huang ◽  
Jian Lie Liang

Phase transformation of the Zr-1.0Sn-0.39Nb-0.31Fe-0.05Cr alloy was investigated by high temperature X-ray diffraction (XRD). The XRD results revealed that the alloy contained two precipitates at room temperature, namely β-Nb and hexagonal Zr(Nb,Fe,Cr,)2. β-Nb was suggested to dissolve into the α-Zr matrix at the 580oC. Thin oxide film formed at the alloy’s surface was identified as mixture of the monoclinic Zr0.93O2and tetragonal ZrO2, when the temperature reached to 750oC and 850 oC. The thermal expansion coefficients of αZr in this alloy was of αa = 8.39×10-6/°C, αc = 2.48×10-6/°C.


Sign in / Sign up

Export Citation Format

Share Document