From a binary salt to salt co-crystals of antibacterial agent lomefloxacin with improved solubility and bioavailability

Author(s):  
Zhi-Hui Zhang ◽  
Qi Zhang ◽  
Qing-Qing Zhang ◽  
Chen Chen ◽  
Ming-Yang He ◽  
...  

The cocrystallization of lomefloxacin (Lf) with barbituric acid (HBA) and/or isophthalic acid (H2ip) leads to novel binary and ternary saltsviahydrogen-bonding recognition. X-ray single-crystal diffraction analyses show that zwitterionic lomefloxacin can adjust itself to fulfill a different supramolecular array in either binary salts or ternary salt co-crystals, formulated as [HLf]·[Hip]·H2O (1), [HLf]·[BA]·[HBA]·H2O (2) and [HLf]·[BA]·[H2ip]·CH3OH·H2O (3). These pharmaceutical agents present uniform charge-assisted hydrogen-bonding networks between HLf cations and acidic coformers with the lattice capturing water molecules. Structural comparison of (2) and (3) indicated that a delicate balance of geometries and hydrogen-bonding partners is required for stacking to favor the formation of ternary salt co-crystals. Cocrystallization was able to overcome the water insolubility of lomefloxacin. Both the salt co-crystals display enhanced solubility and better pharmaceutical applicability.

2005 ◽  
Vol 58 (8) ◽  
pp. 572 ◽  
Author(s):  
Yan-qiong Sun ◽  
Jie Zhang ◽  
Zhan-feng Ju ◽  
Guo-Yu Yang

Two novel charge-transfer salts, [(Bpyph)(SCN)2]·2H2O 1 and {(HBpyph)[Fe(CN)6]}·5.5H2O 2, have been synthesized and characterized using elemental analysis, IR spectroscopy, and X-ray single-crystal diffraction studies. Compound 1 is the first bipyridinium charge-transfer salt containing a cyclic water tetramer, in which the uudd cyclic water tetramers built from four symmetry related water molecules join the Bpyph2+ cations to the dimer by hydrogen bonds between the water molecules and the nitrogen atoms of Bpyph2+. The cooperation of the hydrogen-bonding and π–π stacking interactions between the pyridyl groups results in the formation of an infinite ribbon with a herringbone arrangement. An opened water octamer has been observed in 2. It presents a new association mode of water molecules that is not predicted theoretically nor found experimentally. The water octamer is hydrogen-bonded to two HBpyph3+ cations and two [Fe(CN)6]3− anions to form water octamer-bridged HBpyPh-Fe(CN)6 dimers, which are further connected to each other via π–π offset stacking interactions to generate an infinite one-dimensional ribbon.


2015 ◽  
Vol 1105 ◽  
pp. 335-338
Author(s):  
Qiong Wu ◽  
Jing Lu ◽  
Xiao Lin Ji ◽  
Tao Yu Zou ◽  
Zhen Fang Qiao ◽  
...  

Modifying polyoxometalates with organic and/or metal-organic moieties is a widely adopted method for broading the range of properties. In this work a new polyoxometalate constructed from Anderson-type polyoxoanions and L-arginine (Arg =L-arginine) molecules Na [CrMo6(OH)6O18]}(H2Arg)2·8H2O(1) has been synthesized via conventional method and characterized by routine techniques. Single-crystal X-Ray diffraction analysis shows that compound 1 is constructed by chiralL-arginine grafted Anderson-type clusters, sodium cation and water molecules which are further stabilized by hydrogen bonding interactions constitute 3D supramolecular networks. In addition, both antitumor behavior and photocatalytic activities of compound 1 were investigated.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2292 ◽  
Author(s):  
Qi-Long Zhang ◽  
Qing Yu ◽  
Hai-Fang Xie ◽  
Bo Tu ◽  
Hong Xu ◽  
...  

In this study, six coordination polymers (CPs), {[Ag2(L)(CF3SO3)]·CF3SO3·2H2O·DMF}n (1), {[Ag(L)]·SbF6·4DMF·H2O}n (2), {[Zn(L)0.5(I)2]·3.75H2O}n (3), {[Cd2(L)(I)4(H2O)(DMF)]·4H2O·3DMF}n (4), {[Hg2(L)(I)4]·H2O·4DMF}n (5) and {[Hg2(L)(Cl)4]·2H2O·3DMF}n (6), were obtained based on the designed X-shaped urea-based ligand. X-ray single crystal diffraction analysis revealed that complex 1 displayed a 3D (3,4)-connected {6·82}{64·82}-tcj net. Complex 2 featured a 2D 4-connected {43·63} sheet. Complexes 3 and 5 exhibited a 1D polymeric loop chain. Complex 4 displayed a 1D polymeric fishbone chain. Complex 6 showed a 2D 4-connected {44·62}-sql sheet. Structural comparison revealed that not only the metal ions, but also the anions played crucial roles in the control of final structures.


2013 ◽  
Vol 830 ◽  
pp. 185-188
Author(s):  
Li Hua Wang ◽  
Zhi Xiang Ji

A new Na (I) complex, [Na (H2O)5(DMF)]·(L) (L=1,5-naphthalenedisulfonate) has been obtained in the CH3CH2OH and a little DMF solution. The complex was characterized by X-ray single crystal diffraction analysis. The results showed that the local geometry around central Na (I) ion can be described a distorted octahedral environment which connected by five water molecules and one DMF molecule. The complex formed one dimensional chain structure through intramolecule and intermolecule hydrogen bonds and π-π stacking.


2010 ◽  
Vol 8 (5) ◽  
pp. 1127-1133 ◽  
Author(s):  
Khalid Al-Farhan ◽  
Ismail Warad ◽  
Saud Al-Resayes ◽  
Moustafa Fouda ◽  
Mohamed Ghazzali

AbstractBorneol is a monoterpene that is a part of traditional Chinese and Japanese medicine. (−) borneol reacted with methanesulfonyl chloride in THF/pyridine to afford the new 1,7,7-trimethylbicyclo[2.2.1]hept-2-yl methane sulfonate derivative in excellent yield. The product is characterized by H1NMR, C13NMR, mass spectroscopy as well as elemental analysis and its structure was identified by X-ray single crystal diffraction. The packing of 1,7,7-trimethylbicyclo[2.2.1]hept-2-yl methanesulfonate exhibits the non-classical C-H···O hydrogen bonding in C(4) and R22(8) chain and ring motifs as structural determinants. This was also confirmed by the analysis of Hirshfeld surfaces. The 1,7,7-trimethylbicyclo[2.2.1]hept-2-yl methane sulfonate antimicrobial activity was tested and compared with its parent (−) borneol against three different pathogens. Particularly, 1,7,7-trimethylbicyclo[2.2.1]hept-2-yl methane sulfonate showed high sensitivity, compared to Chloramphenicol reference material, against Escherichia coli.


2020 ◽  
Author(s):  
Markus Ammann ◽  
Huanyu Yang ◽  
Luca Artiglia ◽  
Anthony Boucly

<p>The hydrogen bonding structure of adsorbed water on a solid substrate may control deposition nucleation, which is a pathway of heterogeneous ice nucleation. Hydrogen bonding of water molecules is also controlling the interface between the solid and liquid water relevant for other heterogeneous freezing modes. The hydrogen bonding structure may be affected by short and long-range interactions between the substrate and the water molecules nearby. Electron yield near edge X-ray absorption fine structure (NEXAFS) spectroscopy at the oxygen K-edge is used to experimentally explore the difference between the hydrogen bonding structure of interfacial H<sub>2</sub>O molecules under different conditions of temperature and water vapor pressure. Experiments reported in this work were performed at the in-situ electron spectroscopy endstation at the ISS beamline at the Swiss Light Source (PSI, SLS). We report electron yield oxygen K-edge NEXAFS spectra and X-ray photoelectron spectra from silver iodide (AgI) particles and milled feldspar samples exposed to water vapor at high relative humidity, but subsaturated with respect to ice. AgI serves as a well-studied reference case; and it contains no oxygen in its lattice, which simplifies the analysis of NEXAFS spectra at the O K-edge. The feldspar samples include a potassium containing microcline and a sodium-rich albite. The analysis of the NEXAFS spectra indicate rather tetrahedrally coordinated adsorbed water molecules on AgI particles. On the feldspars, the mobility of ions, as directly observed by the XPS spectra appears to have a strong impact on the hydrogen bonding structure, as apparent from substantial differences between samples previously immersed in pure water or as prepared. To sum up, we attempt to understand the behavior of the hydrogen bonding structure, which provides rich information about the arrangement of water molecules in the vicinity of a solid surface, that is linked to the ability of the solid to induce ice formation.</p>


2003 ◽  
Vol 59 (6) ◽  
pp. 787-793 ◽  
Author(s):  
Vladimir V. Chernyshev ◽  
Denis Machon ◽  
Andrew N. Fitch ◽  
Sergei A. Zaitsev ◽  
Alexandr V. Yatsenko ◽  
...  

The three-dimensional solid-state structures of two modifications of doxazosin mesylate C23H26N5O_5^+·CH3SO_3^-, 4-amino-2-[4-[(2,3-dihydro-1,4-benzodioxin-2-yl)carbonyl]piperazin-1-yl]-6,7-dimethoxyquinazoline methanesulfonate, a commonly used antihypertensive agent, have been determined by synchrotron X-ray powder diffraction. An anhydrous form (A) and a dihydrate form (d G) crystallize in monoclinic space groups. In both forms the doxazosin molecule is protonated at the N1 atom of the quinazoline bicycle. The N1 atom, and the amino H atoms and O atoms of the mesylate moieties are involved in three-dimensional hydrogen-bonding networks, while solvent water molecules and carboxamide O atoms are also incorporated in a hydrogen-bonding network in d G.


2018 ◽  
Vol 20 (5) ◽  
pp. 3388-3394 ◽  
Author(s):  
Chandana Sampath Kumara Ranasinghe ◽  
Akira Yamakata

Hydrogen bonding networks at the water/TiO2 interface were heavily disrupted and an isolated OH band appeared during photoelectrochemical water oxidation.


Author(s):  
Sayuri Chong-Canto ◽  
Efrén V. García-Báez ◽  
Francisco J. Martínez-Martínez ◽  
Ángel Ramos-Organillo ◽  
Itzia I. Padilla-Martínez

A new cocrystal salt of metformin, an antidiabetic drug, and N,N’-(1,4-phenylene)dioxalamic acid, was synthesized by mechanochemical synthesis, purified by crystallization from solution and characterized by single X-ray crystallography. The structure revealed a salt-type cocrystal composed of one dicationic metformin unit, two monoanionic units of the acid and four water molecules namely H2Mf(HpOXA)2∙4H2O. X-ray powder, IR, 13C-CPMAS, thermal and BET adsorption-desorption analyses were performed to elucidate the structure of the molecular and supramolecurar structure of the anhydrous microcrystalline mesoporous solid H2Mf(HpOXA)2. The results suggest that their structures, conformation and hydrogen bonding schemes are very similar between them. To the best of our knowledge, the selective formation of the monoanion HpOXA⁻, as well as its structure in the solid, is herein reported for the first time. Regular O(-)∙∙∙C(), O(-)∙∙∙N+ and bifacial O(-)∙∙∙C()∙∙∙O(-) of n→* charge-assisted interactions are herein described in H2MfA cocrystal salts which could be responsible of the interactions of metformin in biologic systems. The results, support the participation of n→* charge-assisted interactions independently, and not just as a short contact imposed by the geometric constraint due to the hydrogen bonding patterns.


1988 ◽  
Vol 41 (9) ◽  
pp. 1305 ◽  
Author(s):  
JM Frederiksen ◽  
E Horn ◽  
MR Snow ◽  
ERT Tiekink

The crystal structures of the diastereoisomers formed between the hydrogen-D-tartrate anion and the cations (+)-(Λ-[Co(en)2(NO2)2]+ (1) and (-)-(Δ)-[Co(en)2(NO2)2]+ (2) have been determined by three-dimensional X-ray analysis. The crystal structures are comprised of octahedrally coordinated cobalt atoms, hydrogentartrate anions and water molecules interconnected by a complex hydrogen bonding network. In (1), columns of complex parallel to a 21 screw axis along a, are linked via hydrogen bonding contacts to a total of six chains of 'head-to-tail' hydrogentartrate strands. In contrast, in (2) the chains of hydrogentartrate anions associate with each other to form well defined 'walls' which sandwich hydrogen-bonded columns of complex cations such that the structure may be thought of as a layer structure of hydrogentartrate anions and complex cations. Crystals of both compounds are orthorhombic, space group P212121 with Z = 4, unit cell parameters for (1): a 7.670(1), b 12.160(1), c 18.028(1)Ǻ, V 1681.4 Ǻ3 and for (2): a 7.735(2), b 8.505(5), c 26.846(9) Ǻ, V 1766 1 Ǻ3. The structures were each refined by a full-matrix least-squares procedure to final R 0.026, Rw 0.027 for 1764 reflections with I ≥ 2.5σ(I) for (1) and R 0.065, Rw 0.073 for 1322 reflections for (2).


Sign in / Sign up

Export Citation Format

Share Document